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Highlights

• An overview on dynamic networks is provided

• Two cases of study are presented: the dynamics on the network of world’s stock

exchanges and the dynamics of the network of Interlocking Directorates in Italy.

• The World’s Stock Exchanges Network is modeled according to Vitting Andersen et

al. [58]: the model has been implemented using another data source and validated.

• The non-linear price dynamics in the model gives a new way to quantify and study

disruptions propagating across financial markets: ”price-quakes” are defined in terms

of avalanches of price movements.

• Empirical data show power law distributions of the sizes of the avalanches which

is the hallmark of Self Organized Critical systems. Moreover our detailed analysis

of the price dynamics of the avalanches sheds new light on how different markets

influence each other.

• In order to study the evolution of Italian corporate boards by means of interlocking,

two methods have been applied: one already applied by Alfarano et al. on the

German stock exchange and a second original proposed in this research

• The new method points out the presence of stable ties between companies of the

Italian stock exchange. It shows that the Italian Stock Exchange is characterized by

some family owned companies.
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Abstract

The aim of this work is to examine the dynamics in financial networks. We propose

two cases of study: the network of world’s stock exchanges and the network of Interlocking

Directorates in Italy.

In the first case we study the dynamics on the network and in the second one the

dynamics of the network, i.e. in the first case the network topology does not change

and we study the dynamic information that passes through the structure, instead, in the

second case, we study how the network topology evolves over time.

In ’Prices-Quakes Shaking the World’s Stock Exchanges’ (2011) Vitting Andersen et

al. propose a model of the World’s Stock Exchanges that predicts how an individual stock

exchange should be priced in terms of performance of the global exchange market. In the

present work this model is adopted to describe the financial network.

Understanding how disruption can propagate across financial markets is indeed of the

utmost importance, hence our aim is to study the dynamics of the World’s Stock Exchange

network, inter alia we are interested in the study of the avalanches of price, disturbances

propagating in the world financial network of stock exchanges.

In fact the model has a direct correspondence to models of earth tectonic plate move-

ments developed in physics. In tectonic plate movement stresses are slowly build up over

centuries only to be released in a quick snap, lasting from seconds to at most some few

minutes, that we feel as an earth quake.

The main idea is to describe a similar slow build-up of ’stresses’ in the world’s financial

network of stock exchanges where stresses can be thought of arising from for example

business cycles in the real economy. Just like earthquakes such a slow build up of ’stress’

is then followed by a quick release in terms of domino effects where the major part of

the world’s stock exchanges resonate with big up or down price movements. The main

innovative part of the model that we will introduce is therefore a separation of time scales

just as seen in earthquakes.

We first replicate the results of the model using empirical data using as source

Bloomberg. We then verify that the price dynamics can indeed be described in terms

of avalanche dynamics, and we find that such dynamics show power law behavior in agree-

ment with what is found in other Self Organized Critical (SOC) models. We extend such

studies and give a quantitative as well as qualitative description of the details in the

dynamics of the propagation of ”price-quakes” (avalanches).

The second case is the Interlocking Directorates in Italy, i.e. the situation that occurs
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when a person affiliated with one company sits on the board of directors of another or-

ganization, analyzed by using network theory. We first analyzed the Italian case in order

to investigate the presence of a persistent core. Applying the same methodology used by

Milaković et al. [35], from 1998 to 2010 we found quite different results: the persistent

sub-graphs are not connected and so we could not find a core. Instead in the German

stock exchange Milaković et al. have found a small core of directors densely connected

among themselves.

In order to capture the persistent structure of the Interlocks Network we propose a

different approach that allows us to assess the stability of links between companies in Italy.

We describe the dynamic board networks by means of a static graph in which an edge

is related with the persistence over time of an interlock between two companies.

The results lead to affirm that in the Italian board network a set of stable links is

observable, nevertheless a presence of a large turnover between the directors. There are

strong ties among firms in the overall period. Most of them are ties due to the ownership

of family firms: Berlusconi, Benetton, Agnelli, Caltagirone, De Benedetti.
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Introduction

Most real systems can be modeled by complex networks and network tools are widely

employed in various fields. Examples, initially found in sociology and in Social Network

Analysis [59], are further extended to other areas of applications, such as physics [6],

biology [7], economics ([55]) and finance (see [23], [50], [51]).

Network tools are useful especially in studying the dynamical evolution of a complex

system, therefore researcher interest has recently been addressed to studying networks

evolving over time, known in literature as dynamic networks. Our work fits within this

framework and the aim is to examine the dynamics in financial networks.

Afterwards recalling the basic definitions on graph theory (Chapter 1), in Chapter 2

an overview on the dynamic networks, in terms of types, measures and how representing

them, is presented.

The illustration of two cases of study follows in Chapter 3 and Chapter 4.

The two presented cases are very different even if both are financial networks. In the

first one, the study of World’s Stock Exchange network, the aim is to capture the features

of the avalanches, i.e. how the financial markets infect each other.

Hence the analysis regards some dynamic traits passing through the network. In fact

the topology of the network does not change over time but the information, flowing across

the markets, fluctuate hour by hour. Also the avalanches can be represented by a graph

(a type of sub-graph of the original network) and their features give us information about

where the avalanches start, how many markets are involved, etc.

Indeed, in the second case of study (see Chapter 4), the Interlocks Directorates network

of the Italian Stock Exchange, the aim is analyze the topology of the network that is

varying year by year. Thus, in this case, we are interested in describing the dynamic

structural changes and the adopted techniques are based on graph theory. A static graph,

describing the network evolution, is proposed.
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Chapter 1

Fundamental definitions on graph

theory

A graph is the mathematical object underlying the network structure. We shortly recall

some definitions on graph theory which are important for understanding the following

discussion.

Let G = (V,E) be a graph where V is the set of n nodes (or vertices) and E is the set

of m pairs of nodes of V ; the pair (i, j) ∈ E is called an edge (or link) of G, and i and j

are called adjacent nodes (i ∼ j).

In an undirected graph edges have no orientation, (j, i) ∈ E whenever (i, j) ∈ E. On

the other hand in a directed graph (or digraph) (i, j) is an ordered pair of nodes.

If there is no edge starting and ending on the same vertex (self–loop), and no more

than one edge is allowed between two nodes the graph is called simple, otherwise it is

called multigraph.

In an undirected graph the degree ki of a node i (i = 1, ..., n) is the number of edges

incidental to it.

In a directed graph the in-degree kini of a node i (i = 1, ..., n) is the number of edges

incoming to it and the out-degree kouti of a node i (i = 1, ..., n) is the number of edges

outgoing from it.

A sub-graph H = (V ′, E′) of G is a graph such that V ′ ⊆ V and E′ ⊆ E. A sequence

of distinct adjacent vertices from i to j is an i− j path; the length of a path is the number

of edges in the path. A path joining vertices i and j and having the minimum length is

called an i− j geodesic.
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The distance d (i, j) between two vertices i and j is the length of the i − j geodesic.

A graph is connected if, for each pair of nodes i and j (i, j = 1, 2, ..., n) , a path from i

to j exists, otherwise the graph is disconnected. A connected component of an undirected

graph is a sub-graph in which any two nodes are connected to each other by paths, and

which is connected to no additional vertices in the super-graph.

Therefore, a connected graph G has only one connected component, whereas a discon-

nected graph G has two (or more) connected components.

A node is isolated if it is not connected to any node.

A clique in an undirected graph is a sub-graph in which every pair of nodes are adjacent.

A graph is complete is every pair of nodes are adjacent.

A graph is bipartite if the set of nodes V can be partitioned into two subsets V1 and

V2, i.e. V1 ∩ V2 = φ and V1 ∪ V2 = V , such that every edge of the graph joins one node of

V1 and one of V2.

The adjacency relationship between the nodes of G are described by a non-negative

n-square matrix A called the adjacency matrix associated with the graph which elements

are:

aij =

 1 if i ∼ j

0 otherwise

If the graph is simple, the diagonal entries aii are zero. Finally, a weight wij > 0 can

be possibly associated with every edge (i, j), generating a weighted graph; in this case the

adjacency relationships are described by a n− square matrix W = [cij ] called the weighted

adjacency matrix which elements are:

cij =

 wii if i ∼ j

0 otherwise

A contract graph is derived by another graph merging two or more vertices into one.

The vertices in the contract graph correspond to sets of vertices in the original graph and

the edges between vertices in the same set disappear in the contract graph.

A hypergraph is a generalization of a graph in which an edge can connect any number of

vertices. Formally, a hypergraph H is a pair H = (X,E) where X is a set of elements called

hypernodes or hypervertices, and E is a set of non-empty subsets of X called hyperedges.

While in a graph edges are pairs of vertices, in a hypergraph, hyperedges are arbitrary set
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of vertices, because in a hypergraph the edges can connect any number of vertices. It is

possible to represent a hypergraph as a family of sets drawn from the set V.

The density of a graph G is given by the ratio of the number of existing edges m to

the number of edges in a complete graph of the same size (i.e. n · (n− 1)), hence:

densityG =
m

n · (n− 1)

In general a graph is called more cohesive than another if it has a higher density.

The most important centrality measures are:

Degree Centrality :

Cd(i) = ki ∀i ∈ V

Closeness Centrality :

Cclos(i) =
1∑

j∈V d(i, j)
∀i ∈ V

Betweenness Centrality :

Cbetw(i) =
∑
r<s

grs(i)

grs
∀i ∈ V r, s 6= i

where grs is the number of geodesics from r to s and grs(i) is the number of geodesics

from r to s and passing through i.

Eigenvector Centrality :

Let A = [aij ] the adjacency matrix of a graph G, {λ1, λ2, ..., λn} is the set of the eigen-

values of A, ρ = maxi|λi| its spectral radius and x the principal eigenvector corresponding

to ρ:

Ceig(i) = xi ∀i ∈ V

where xi is the i-th component of x.

For other graph definitions, we refer to [25].
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Chapter 2

Dynamic networks

A graph can model a great variety of systems in nature, society and technology.

Unlike the classical approach of the network theory, in this case we consider an addi-

tional dimension: the time.

Indeed the edges are not continuously active but their presence depends on the time.

Like network topology, the temporal structure of edge activations can affect dynamics of

systems interacting through the network.

In this chapter we present a concise overview on dynamic networks (the object of study

has many names: dynamic networks, temporal networks, evolving graphs, time-varying

graphs, time-aggregated graphs ) and the methods for analyzing topological and temporal

structure.

When a dynamic network is studied, it may be that the object of the study is the

network itself (the vertices and the edges), rather than a dynamical system on the network.

In this work we present in Chapter 4 an application of the first approach and in Chapter

3 an application of the second one.

2.1 Types of dynamic networks

In order to present the various applications of the dynamic network, in the following

section we report some of the most utilized models (see [27]).

The communications between people are particularly suitable for dynamic networks.

There is a lot of data available of e-mails contacts, phone calls, mobile phone text messages,

instant messages and messages online forum. So a literature in this context was developed
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(see [28], [60]).

In order to study the spreading dynamics of information, the analysis of various tem-

poral centrality measures (see Section 2.2) is also done in [43] and [56].

Also the communication from a source to anyone has been analyzed by dynamic net-

works, i.e. from one node (the source) and a group of nodes (the elements connected to

the source).

In [62] the geographical distribution of editors for each Wikipedia’s in the globe is

estimated. In fact, the authors try to characterize and to find the universalities and differ-

ences in temporal activity patterns of editors, using the cumulative data of 34 Wikipedia’s

in different languages and taking into account the circadian activity patterns among editors

of all different languages (so they assumed a local time offset for each language).

In biology, frequently a static graph represents the interactions between proteins or

lighter molecules. However, biological functionality is mostly related to connection activity

at all times. So there is a large literature investigating the temporal aspects of protein

interaction.

For example, in [24] the authors investigate how hubs might contribute to robustness

and other cellular properties for protein-protein interactions dynamically regulated both

in time and in space. They define two types of hubs: ’party’ hubs, which interact with

most of their partners simultaneously, and ’date’ hubs, which bind their different partners

at different times or locations. Hence they study the connectivity of dynamic networks in

the two different cases.

The above-mentioned models are not the only potential applications of dynamic net-

work modeling, but, in the network literature, every time that there is a temporal evolution

a dynamic network approach could be used.

To describe a dynamic network there are two different ways depending on the inform-

ation about the time. We have a graph G = (V,E), a set V of n vertices, interacting with

each other at certain times (the interactions are described by edges e = (i, j) ∈ E). If the

duration of the interaction is negligible, there is a time set Te = {t1, ..., tn} for e ∈ E, on

the contrary, if the duration is relevant, a set of time intervals Te = {(t1, t
′
1), ..., (tn, t

′
n)}

for e ∈ E.

In the first case it is possible to represent the dynamic graph with a set of contacts,

triples (i, j, t), where (i, j) ∈ E and t denote the time, or with a set of graphs Gt one for
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each t ∈ T . In our work we prefer the second choice (see Section 4.5).

The adjacency matrix will depend on time t, hence it becomes

at(i,j) =

 1 if i and j are connected at time t

0 otherwise
(2.1)

In the second case (we can call it interval graphs) the contacts could be represented

as a quadruples (i, j, t, δt). It means that there is a contact (edge) between vertices i and

j at time t during δt (for more details see [43]).

The vertices could be active intermittently, but usually it is more useful to maintain

the same number of vertices for the whole period (see Section 4.5).

Sometimes the Agent-Based Model (ABM) is used to analyze dynamic networks.

An agent-based model (ABM) is a class of computational models for simulating the

actions and interactions of autonomous agents with a view to assessing their effects on the

system as a whole.

Most agent-based models are composed of: numerous agents specified at various scales;

decision-making heuristics; learning rules or adaptive processes; an interaction topology

and a non-agent environment.

We only mention these useful models because we do not use them in this work.

2.2 Measures of dynamic-topological structures

In graph theory there are various measures based on connections between nodes, path

lengths, features of adjacency matrix, ect. When time is added to describe the network, a

classical approach consists on applying the static measures to each static graph describing

the network at time t and showing the trend on time of the measure or the average.

This approach is not always possible, for example in presence of paths depending on

time. In [29] the authors call a path time-respecting if the time labels on its edges are

non-decreasing ( i.e. the edges are in succession in time) and they consider connectivity

problems, in which they seek disjoint time-respecting paths between pairs of nodes.

As for the static graphs, two nodes can be strongly or weakly connected, but it is

interesting to observe that connectivity is not a symmetric property for dynamic graphs.

In fact if there is a time-respecting path from i to j and from j to k, it could be possible
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not to find a time-respecting path from i to k.

In dynamic graphs the definition of shortest path changes in fastest path. However,

we should consider not only the weights of the edges in terms of time but, all above, the

sequence of the current edges and so the issue is more complex than a problem of distance

on a weighted graph.

After the notion of distance has been extended to the temporal case, it is possible to

generalize some centrality measures defined for a static graph, like the closeness centrality

and betweenness, to the dynamic case (for further details see [43], [27]).

2.3 Collapsing a dynamic network in a static graph

An approach to analyzing dynamic graphs is to derive a static graph that captures

both temporal and topological system properties. A direct way is to sum over time the

edges and to obtain a weighted graph. The entries of the weighted matrix are

w(i,j) =
∑
t

at(i,j) (2.2)

where the terms of the sum are the entries of the adjacency matrix (see Equation 2.1).

This is a trivial way of projecting out the temporal dimension and sometimes it can

discard too much information. However it is useful when the topological aspects are more

important than the temporal.

In a static graph it is possible to combine the topological and temporal features. In

Section 4.5 we propose a static weighted graph that can capture the topological features

of a dynamic network. Nevertheless, the weights are not only the sum of the edges, but

they give us an information about the stability of the edge during the time.

Instead in Section 3.4.3 in representing an avalanche as a static graph it is satisfact-

ory to sum up the edges because the issue is to study topological characteristics of the

avalanches.

An alternative graph representation is obtained putting an edge from node i to node

j if there is a time-respecting path from i to j. The obtained graph is called path graph

[37] and it is useful to study diffusion problem in networks.

In this work we do not use this second representation even if, for further study, it could

be useful to apply it to the avalanches (see Section 3.4.3).
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In conclusion, the representation of a dynamic network by means a single graph can

be very useful but it should be chosen considering all aspects of the system.
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Chapter 3

Case of study: World’s Stock

Exchanges Network

3.1 The model of Vitting-Andersen et al.

The model, proposed by Vitting Andersen et al. in [58], has been chosen to describe

the World’s Stock Exchange Network. The model predicts the sign of the return of a given

stock exchange, using the values of the return of other stock exchanges.

It is an extension of the 2D Olami-Feder-Christensen model [42] that describes the

dynamics of earthquake (see 3.4.2). In fact financial crises, like earthquakes, are able

to shake up countries in a widespread and disastrous manner. While the origin of the

earthquakes is well understood (the continuous build up of stress from tectonic plate

movements), the causes of financial diseases are not as clear. The model proposes a top-

down approach to study the contagion between the financial markets. The contagion has

been analyzed from other points of view in [19] and [38] extending the study of systemic

risk outside of banking system.

A key idea of the model is that humans have a tendency to place emphasis on events

with big changes and to disregard events with modest information content.

Hence a large fluctuation of the return of a market impacts on other financial markets,

whereas a small fluctuation does not and, on the contrary, it goes unnoticed. In fact a

key principle is that a new information immediately becomes reflected in the price of an

asset and thereby loses its relevance, but, we can say, only if the new information is quite

significant, otherwise it is ignored.
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Similarly to what happens for earthquakes, it is possible to assume that there is a

”stick-slip” motion of the indices: only a large movement of a given index has a direct

impact on the pricing of the remaining indices.

Applying the 2D Olami-Feder-Christensen model [42] the markets are represented as

blocks and two blocks are linked by a spring of variable strength. The aim is to study

how the stresses increase and spread on the global financial system. The impact from e.g.

a slowly varying business cycle on the financial markets can then be studied similarly to

the slow build up of stresses seen in tectonic plate movements. The fast response in the

tectonic plate system seen in terms of earthquakes, then corresponds to dominos of price

movements seen in the network of the worlds stock exchanges. The separation of time

scales into a slowly varying variable (say impact from business cycle) and the response in

terms of a fast variable (daily large price co-movements across markets) is one of the main

features of the model introduced below.

The model assumes that a trader in a given stock market i prices an index in according

to 3.1.

Pi(t) = Pi(t− 1)eRi(t) (3.1)

where Ri(t) is the index return of the stock market i at time t. Hence the trader has to

estimate Ri(t).

A universal behavioral mechanism in the pricing done by traders is postulated. The

return Ri(t) is composed of two terms (see 3.2): one depending on local economic news

(ηi(t) - a bias in ηi(t) corresponds to a slowly build of of stresses in the system) and

other one (Rtransferi (t)- with Rtransferi (t) corresponding to the fast variable of daily price

co-movements in the network of stock exchanges) on big cumulative changes from other

stock exchanges weighted by their importance (in terms of capitalization) and relatedness

(in terms of geographical positioning). The model in formulas is (see also [58]):

Ri(t) = Rtransferi (t) + ηi(t) (3.2)

Rtransferi (t) =
1

N∗i

N∑
j 6=i

αijΘ(|Rcumij (t− 1)| > RC)×Rcumij (t− 1)βij (3.3)
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Rcumij (t) =
[
1−Θ(|Rcumij (t− 1)| > RC

]
·Rcumij (t− 1) +Rj(t) (3.4)

αij = 1− e−
Kj
Kiγ (3.5) βij = e−

|zi−zj |
τ (3.6)

where Ki,Kj are the capitalizations of the indices i and j,

zi,zj are the time zones of the markets i and j.

N∗i =
N∑
j 6=i

Θ(|Rcumij (t− 1)| > RC) (3.7)

Θ(x) =

 1 if x = true

0 if x = false
(3.8)

Let’s focus on time t in (3.3) : it is the time in which the market i, for example, opens,

whereas t− 1 (note that is not the time in which the market i had closed) is the time of

the last known information (close or open) of exchange j known at time t in the market

i. The definition states a time t relative to market i in which the model is applied. In

practice, it is necessary to find a global time in order to apply the model for each market

i.

This fact is not trivial also because the sequence of open/close turns depend on the

time zones and their daylight saving time changes. Furthermore it needs to state, for each

market i, which are the information of exchange j known at time t in the market i taking

in account the holidays of every country.

In the model there are five parameters: N number of markets, RC the threshold, τ

the time scale of the impact across time zone, γ the impact scale from capitalization and

σ the standard deviation of noise ηi.

More in detail, in (3.2) ηi represents the internal economic news relevant for the specific

market i and Rtransferi represents the influence on market i of the other markets. In

equation (3.3) the contribution of the return of market j on market i (Rcumij ) is added

only if it is greater, in absolute value, than the threshold RC which corresponds to the

fact the ’information’ (in terms a large cumulative price movement of another stock index)
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becomes priced in. This explains the Heaviside function Θ (see 3.8). On the other hand

Rcumij is nullified after passing the threshold RC (see (3.4)). The equation (3.4) means that

the variations are considered also if they are cumulative over time.

Let’s observe that in (3.4) the index i (compared to the original version [58]) has been

added to underline that the time t referring to the market i, hence Rcumij (t) is computable

only knowing the index i. For example, if the U.S. market gains 4% and the Italian Stock

Exchange is closed for a holiday, the Italian market will be influenced only when it opens,

whereas the other markets have already priced the information. Let us remember that the

model takes in account only of open/close prices and no intra-daily ones as in Econometrics

models (see [10]).

In (3.3) the contribution of market j is multiplied by two weights: αij describes the

influence of stock j on stock index i in terms of relative capitalization value of the two

indices Ki and Kj . Obviously αij 6= αji. The parameter γ is used to weigh the coefficients

αij .

βij describes the economic interdependence of the countries that are geographically

close, zi and zj are the time zones of the countries i and j. The parameter τ is used to

weigh the coefficients βij . In this case βij = βji ∀i, j.

In 3.3 N∗ is the number of markets in which Rcumij is, in absolute value, higher that

the threshold RC .

3.2 Data and methodology

In [58] the model was applied to empirical data in order to calculate its predictive

ability. The number of markets N was 24, for each market an index was chosen and data

were downloaded from finance.yahoo.com.

The other four parameters of the model were calculated using maximum likelihood

analysis: γ = 0.8, τ = 20, RC = 0.03, σ2 = 0.0006.

In order to validate the model, in our work we replicated the application, with the

same parameters, same indices but retraining data from another source. In fact the data

were downloaded from Bloomberg.

The list of indices (from the two sources) is shown in Table 3.3.

The data considered are the opening and closing price of the 24 stock exchanges from

20



1/1/2000 to 31/12/2008. The data referring to Saturday and Sunday were not taken in

account because the markets are closed (except Telaviv and Cairo on Sunday).

The results we obtained are the same as in [58], thus confirming the validity of the

empirical application.

The model is able to predict the sign of the return of the open/close of a given stock

exchange with a success rate of 63%.

We have computed the conditional probability that the close-open return (i.e. the

overnight return) Ri of a given stock exchange following an U.S. open-close, has the same

sign as the U.S. open-close return. The result is shown in Figure 3.1. In fact U.S. market

has the largest capitalization and it allows to check how large movements of large capital

indices impact on smaller capital indices. From Figure 3.1 it can be noticed that this effect

is non-linear.

Figure 3.1: Conditional probability that the close-open return Ri of a given stock exchange
(+: European markets,; circles: Asian markets) following an U.S. open-close, has the same
sign as the U.S. open-close return

Moreover, in Figure 3.2 the distribution of the return Ri and its two components
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Rtransfer and ηi are shown. Figure 3.2 shows that the price movements due to external

(random) news, i.e. ηi, do indeed fit a normal distribution. It depends on the choise of

the parameters calculated using maximum likelihood analysis.

Figure 3.2: Red circles: observed return Ri; green squares: Rtransfer; blue +: the difference
ηi. A logarithmic scale is on the y-axis

The data were processed using Matlab. To manage the sequence of opening/closing of

the 24 markets it was necessary to know the changes of Daylight Saving Time from 2000

to 2008 in the considered 24 countries and the source is www.timeanddate.com.

Table 3.4 shows an example of a sequence of opening and closing of the 24 markets:

the events are 48 per day and, more in detail, the events are the return of the close/open,

i.e. R = ln(
Popen
Pclose

), and the return of the open/close, i.e. R = ln(PclosePopen
) where the Pclose

and the Popen are respectively the index price when the market closes and opens.

In the column ’clock of the model’ it is possible to observe that the events happening

in the same hour are considered contemporaneous and the interactions between them are

disregarded. In this way in a day the model has only about 16 different times, called

’clocks’, even if it processes 48 different events.

3.3 Interpretation of the model as a network

The aim of this work is to study the dynamics of the World’s Stock Exchange Network.

To do this we consider the 24 markets as nodes of a network. The network is represented
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by a complete graph (see Figure 3.3) because all nodes are connected to each other.

Figure 3.3: The World’s Stock Exchange Network is a complete graph

The interesting thing is not the topology of the network, that is trivial, but the in-

formation passing through the links, i.e. Rtransfer. Each node can be considered as a

seismograph which at any clock measures the influence on itself caused by the large price

movements of the other stock exchanges world-wide.

The links are weighted by αij and βij and so an information, starting from a node,

will produce different impacts on the other nodes. It is possible to show the relationship

Figure 3.4: A star representing the relationships between a node (MILAN) and the others
in term of weights α: thicker edges indicate a higher value of α

Figure 3.5: A star representing the relationships between a node (MILAN) and the others
in term of weights β: thicker edges indicate a higher value of β

between the nodes by picking out a market and putting it in the center of a star. The
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weighted (by αij and βij) and directed links, entering in it, show how the network influence

it. If we split in two different graphs the contribution of αij and βij we can visualize the

relation of a node with the others in terms of capitalization ratio (see Figure 3.4) or

geographical distance (see Figure 3.5).

3.4 Study of the network dynamics

3.4.1 The SOC model

Self-organized critical models (SOC) are a class of dynamical systems which have a

critical point as an attractor. Their macroscopic behavior thus displays the spatial and/or

temporal scale-invariance characteristic of the critical point of a phase transition, but

without the need to tune control parameters to precise values.

The concept was put forward by Bak-Tang- Wiesenfeld (BTW) in [5] and is considered

to be one of the mechanisms by which complexity arises in nature. Its concepts have been

largely applied across diverse fields (see [3], [4], [57], [2]) and also in finance (see [44]) .

A system is critical if it is in transition between two phases; for example, water at

its freezing point is a critical system. A variety of critical systems demonstrate common

behaviors: long-tailed distributions of some physical quantities, fractal geometries and

variations in time that exhibit pink noise, i.e.: the noise is a time series with many

frequency components and in a pink noise, low-frequency components have more power

than high-frequency components, specifically, the power at frequency f is proportional to

1/f. (Visible light with this power spectrum looks pink, hence the name).

SOC is typically observed in slowly driven non-equilibrium systems with extended

degrees of freedom and a high level of nonlinearity.

In [5] the authors showed that the observed complexity emerged in a robust manner

that did not depend on finely tuned details of the system: variable parameters in the model

could be changed widely without affecting the emergence of critical behavior (hence, self-

organized criticality). A visualization of the model is a sand-pile on which new sand grains

are being slowly sprinkled to cause avalanches. There are no known general conditions

under which a system displays SOC but the power law distribution is a common feature

(a distribution is a power law if its probability distribution p(x) is p(x) = C(α)x−α where

C(α) is a normalization constant)
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There is a large literature in applying SOC in finance: in [8] the authors study the Stock

Market as a complex self-interacting system, characterized by an intermittent behavior.

They investigate empirically the possibility that the market is in a self-organized critical

state and show a power law behavior in the avalanche size, duration and laminar times

(i.e. the waiting times between avalanches), but the memory process of the laminar times

is not consistent with classical conservative models for self-organized criticality. So they

argue that a “near-SOC” state or a time dependence in the driver, which may be chaotic,

can explain this behavior.

In [21] the authors explore a simple lattice field model intended to describe statistical

properties of high frequency financial markets. They simulated with time series of gains,

prices, volatility, applying a standard GARCH(1,1) fit to the lattice model and they found

the emergence of a self-organized critical state.

In [12] they study a few dynamical systems composed of many components whose sizes

evolve according to multiplicative stochastic rules. In the case of the stock market, the

distribution of the investors wealth is related to the ratio between the new capital invested

in stock and the rate of increase of the stock index. They compare them with respect to

the emergence of power laws in the size distribution of their components. They show that

the details specifying and enforcing the smallest size of the components are crucial as well

as the rules for creating new components and they present a new model with variable

number of components that converges to a power law for a very wide range of parameters.

It should be noted that in our model there are some characteristics of the SOC: the

memory effects, that is the cumulative ’stress’ that determines when a block ’slip’, and

the size of the avalanches has a power law distribution (see 3.4.3 and 3.4.3 )

3.4.2 The 2D Olami-Feder-Christensen model (OFC)

In 1967, Burridge and Knopoff [13] introduced a one-dimensional (1D) system of

springs and blocks to study the role of friction along a fault in earthquakes. Since then,

many other researchers have investigated similar dynamical models of many-body systems

with friction, ranging from propagation and rupture in earthquake so to the fracture of

over-layers on a rough substrate.

In 1992, a model was proposed by Olami-Feder-Christensen in [42] as an extension of

Burridge and Knopoff in the two-dimensional case (2D). Their model is a non-conservative
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self-organized critical model. In fact the authors showed a robust power law behavior with

an exponent that depends on the level of conservation.

In the model, the fault is represented by a two-dimensional network of blocks inter-

connected by springs (a lattice). Additionally, each block is connected to a single rigid

driving plate by another set of springs as well as connected frictionally to a fixed rigid

plate.

The blocks are driven by the relative movement of the two rigid plates. When the force

on one of the blocks is larger than some threshold value (the maximal static friction), the

block slips. They assume that the moving block slips to the zero force position. Slip of one

block will redefine the forces on its nearest neighbors. This may lead to instabilities of the

neighboring blocks and thus, as a result, in further slips and a chain reaction (earthquake)

can evolve.

The total number of slips following a single initial slip event is a measure of the size

(seismic moment) of the earthquake.

The model was extended to other topology like small world network 1 [17], scale free

network2 [16], or with a variable level of conservation [63].

In [33] to the OFC model on a square lattice, some rewired long-range connections

are added and the resulting network has the properties of small world networks. Also in

this work power-law behavior are founded and the authors underline that the connectivity

topologies are very important to models avalanche dynamical behaviors.

In our model the topology of the avalanches depends on weighted and directed links.

In fact the only presence of a link between two nodes does not ensure that an information

passes through it because it is filtered by the weights α and β.

3.4.3 The avalanches

As observed in [32], the avalanche dynamics is an peculiar feature of complex systems.

So we study the Self-Organized Critical dynamics of avalanches on our model. We expect

that the avalanche size has a power-law distribution according to the features of SOC.

In our model at first we have to determine which are the elements that compose an

avalanche. In agreement with the constraints imposed by the model, we propose that

1 A small world is a network where the distance between two randomly chosen nodes grows proportion-
ally to the logarithm of the number of nodes n of the network

2A scale-free network is a network whose degree distribution follows a power law
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Figure 3.6: An avalanche is like a wave that moves according to the times of market’s
open/close

only the markets that, opening or closing, have a return, in absolute value, greater the

threshold, also if cumulative over time, may belong to an avalanche. The next definitions

follow:

Definition 3.1 (critical node).

A node i is positive critical (respectively negative critical ) at time t if and only if

• at time t the node opens or closes

• Rcumi (t) > RC (respectively Rcumi (t) < −RC )

Definition 3.2 (avalanche).

An avalanche is a set of critical nodes (all positive or all negative) whose criticality depends

to each other. A node whom criticality depends by another nodes is called influenced.

We can define different kinds of avalanche if we state different definitions of influenced.

We propose two kind of avalanches: avalanche caused by single nodes and avalanche caused

by a set of nodes. This second kind of avalanche could be more in agreement with the

model. In fact a market i, through Rtransfer, is influenced by every node j of the network

in which |Rcumj | > RC , so the ”influence” is made by a set of nodes. On the other hand in

[5] the iteration is defined element by element. In order to verify which definition is more

correct, at first we propose two different kinds of avalanche.

The Single Node Avalanches (SNA)

Definition 3.3 (node influenced by a single node).

A critical node i is influenced by node j at time t if and only if
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• at time t the node i opens or closes

• |Rcumi (t− 1) + αijβijR
cum
j (τ)| > RC where t− 1 is the previous time in which node

i opened or closed

• t− 1 ≤ τ < t

• node j is critical (with the same sign of node i) at time τ

A node i may be influenced by more than one node. A node i is not influenced by a

node that is critical at time t (contemporaneous events) (in fact τ < t and not τ ≤ t)

Definition 3.4 (Single Nodes Avalanche (SNA)).

When

(1) a critical node i , at time t, is influenced by another critical node j (with the same

sign)

(2) the node j has not been influenced by another node

(3) the node j opens or closes at time τ

(4) τ is the first time in which (1), (2) and (3) happen

we can define that an avalanche starts at time τ .

A node k belongs to the avalanche if:

• the node k is critical (with the same sign of node i) at time t > τ

• or node k influences node i

• or a chain of nodes ( influencing each other) exists starting from node i or from a

node that influenced node i and arrives in node k.

The avalanche stops at time T if

• at time T a node belonging to the avalanche opens or closes

• for every node s at time t > T

- or node s is not critical

- or node s is critical but is not influenced by any node belonging to the avalanche.
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For every avalanche it is possible to build a graph that represents it. The markets are

the nodes and the links are defined in the following way: when a node i is influenced by a

node j we put a link from node j to node i. The node j could or could not be influenced

by another node.

Figure 3.7 shows a simple example of negative SNA: the 24 nodes are on columns and

times on rows. In the model there is an event when a market opens or closes, so there are

24 markets and 48 events per day. The markets that open or close in the same hour are

considered contemporaneous. The model doesn’t take in account the interactions between

contemporaneous markets. In this way for every day the model doesn’t manage 48 different

times but only, in average, 16. In Figure 3.7 the negative critical nodes are represented by

a red rectangle, whereas the other nodes are represented by a yellow rectangle. Finally,

in the last column the red line indicates the presence of a negative avalanche. So we can

Figure 3.7: Example1: Single Node Avalanche

observe that node 21 influences node 7, node 7 influences node 3 and node 15. Node 22

is critical but it is not influenced by any other. We can say that the negative avalanche

starts from node 21 and stops to node 3 after 23 clocks (little more than a day). The

number of nodes belonging to the avalanche are 4.

Figure 3.8: Example2: Single Node Avalanche

Figure 3.8 shows a positive avalanche composed by 8 nodes in which there are two nodes

influencing but not influenced: node 6 and node 22. These kind of nodes are interesting
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because they play the role of source of avalanches (in the graph these nodes have zero

in-degree). The Figure 3.8 also shows some critical nodes on the same line (node 16 and

18, or node 15 and 17): they are contemporaneous and, as mentioned above, the model

does not take in account the influence between the contemporaneous events. So we never

put a link between these critical nodes.

Now it is possible to analyze the avalanches which are present in our model. The data

are those presented in Section 3.2. The study of the avalanches leads to set of graphs (one

for each avalanche): if we sum, over time, their adjacency matrices we have an information

about more present links (see Equation 2.2) . If we do it for positive SNA we obtain the

data show in Table 3.7, for negative SNA in Table 3.6, for negative and positive in Table

3.5.

Because the European market are all contemporaneous, with the exception of Nether-

lands that opens and closes one hour later, we can observe the influence from European

market to Netherlands market and we cannot observe the influence between the other

European markets. Also in the Asian market: for a long period of the year the markets

of China, Hong Kong, Taiwan, Singapore and Malaysia are contemporaneous, but the

market of South Korea opens and closes before them. So we can observe the influence of

this market on the others and not the mutual influence.

The Table 3.8 shows the number of times in which a market is critical. We can

distinguish between critical nodes influenced (in Figure 3.7 node 3,7,15), critical node

influencing but not influenced (in Figure 3.7 node 21) and node critical but not belonging

to an SNA. The sum of critical statuses for each market gives an information about the

activity of each node. Figure 3.9 shows the correlation between this activity (see Table 3.8)

and the volatility (variance) of the market, where r=0,8856. The presence of correlation

suggests that the information: how much a node is critical, is not very interesting in order

to investigate the dynamics of the network. In fact we are interested in analyzing the

different roles that the different markets play. It is not certain that a market with high

volatility has an important role in the dynamics of the avalanches. It could not have a

large influence on the network. So we analyze the percentage of the different statuses of

the markets (see Table 3.9). In this table the second column shows where the SNA starts

more frequently. This role is particularly important: when in a market a large number of

avalanche starts, it means that it is able to influence the network. Vice versa, the market
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Figure 3.9: Correlation between the activity (critical node) and the volatility of the markets

Figure 3.10: Distribution of the number of nodes belonging to a SNA

in which no avalanche starts plays a secondary role in the dynamics. The SOC models

are characterized by a power law distribution. In our case we have to verify if the number

of nodes belonging to an avalanche follows a power law distribution. The distribution

is shown in Figure 3.10 and Figure 3.11. Since an avalanche needs time to overwhelm

many nodes, the distribution of the duration of an avalanche also follows a power law

distribution as shown in Figure 3.12 and Figure 3.13. In the model a new time t is

processed if there is a new event (a market opens or closes): we call it clock. However it

must be taken into account that between a clock and the succeeding there is not the same

interval of real time and the duration is relative to the internal clock of the model.

In the Table 3.1 we can observe the average data of the SNA. Before analyzing in more
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Figure 3.11: Distribution of number of nodes belonging to a SNA: log/log graphic

Figure 3.12: Distribution of the number of clock during a SNA

Figure 3.13: Distribution of the number of clock during a SNA: log/log graphic
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number of SNA node average clock average time average(days)

Negative SNA 337 8.32 22.34 1.39
Positive SNA 515 5.27 19.65 1.22

Total SNA 852 6.46 20.49 1.28

Table 3.1: SNA Statistics

detail the obtained results we introduce a different kind of avalanche.

The Cloud Avalanches (CA)

The second kind of avalanches is based on another definition of influenced. The

model splits Ri in two different terms: one (ηi) caused by local economic news and other

(Rtransferi ) caused by a big cumulative change from other stock exchanges weighted by

their importance. If Rtransferi is able to make critical a node i (considering only the

contribute of critical nodes of the same sign of node i) we can identify a set of nodes

influencing node i.

Definition 3.5 (node influenced by a cloud of nodes).

A critical node i is influenced by a set of nodes, at time t if and only if

• at time t the node i opens or closes

• |Rcumi (t− 1) +
∑N∗
j 6=i αijβijR

cum
ij (τj)

N∗ | > RC

- where t− 1 is the previous time in which node i opened or closed

- for every j : t− 1 ≤ τj < t

- node j is critical (with the same sign of node i) at time τj

- N∗ is the number of critical nodes j

The set of nodes node j, all critical in τj is called the cloud that influences the node i.

We can observe that the nodes belonging to the cloud that influences node i, are critical

(so they open or close) in time between t− 1 and t where t refers to node i (at time t− 1

and t node i opens or closes).

Definition 3.6 (Cloud Avalanche (CA)).

When

• a critical node i , at time t, is influenced by a cloud of nodes j
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Figure 3.14: Example of Cloud Avalanche

• every node j belonging to the cloud has not been influenced by another node

• every node j belonging to the cloud opens or closes at time τj

• τ is minj{τj}

we can define that an avalanche starts at time τ .

A node k belongs to the avalanche if:

• the node k is critical (with the same sign of node i) at time t > τ

- or node k belongs to the cloud that influenced node i

- or exists a chain of nodes ( influencing each other) that starts from node i and

arrives to node k

The avalanche stops at time T if

• at time T opens or closes a node belonging to the avalanche

• for every node s at time t > T

- or node s is not critical

- or node s is critical but is not influenced by any node belonging to the avalanche

As done previously we can build a graph representing a CA: when a node i is influenced

by a cloud of nodes we put a link from every node, belonging to the cloud, to node i. In

Figure 3.14 node 11 is influenced by the cloud of nodes 3,4,14,18,20,21,23. They are all

critical nodes between the times in which node 11 opens and closes. Node 19 is critical

but with opposite sign, so it does not influence node 11. Node 5 and 6 are critical before

node 11 opens, so they do not influence node 11 when it closes.
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As for SNA we can sum, over time, the adjacency matrices representing the CA and

we have an information about more present links. If we do it for positive CA we obtain

the data shown in Table 3.12 , for negative CA in Table 3.11, for negative and positive

in Table 3.10. The Table 3.13, shows the number of times in which a market is critical.

We can distinguish between critical nodes influenced, critical nodes influencing but not

influenced and nodes critical but not belonging to a CA.

Comparing to the SNA does not change the number of critical status but it changes

the kind of critical status. Table 3.14 shows the percentage of the different statuses of

the markets. In this table the second column shows where the CA starts more frequently.

The distributions of the number of nodes present in the CA and of the number of clocks

(in a day there are about 16 clocks) in the CA are showed in Figure 3.15 , Figure 3.16 ,

Figure 3.17 , Figure 3.18. In Table 3.2 we can observe the average data of the CA.

number of CA node average clock average(clocks) time average(days)

Negative CA 334 8.72 23.19 1.45
Positive CA 497 6.13 21.22 1.33

Total CA 831 7.17 22.01 1.38

Table 3.2: CA Statistics

Figure 3.15: Distribution of the number of nodes belonging to a CA

Comparing SNA’s and CA’s

The number of nodes of CA’s is greater than that of SNA’s, but not very significantly.

The differences in the definition of SNA and CA could lead to expect a more significant

difference in terms of number of nodes. In reality the nodes interesting in a SNA or CA
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Figure 3.16: Distribution of number of nodes belonging to a CA: log/log graphic

Figure 3.17: Distribution of the number of clock during a CA

are quite the same because the relation of influence between nodes is relative. In fact

considering, in a CA, a cloud of nodes influencing another set of nodes, when we consider

the same nodes in a SNA it may be that most of the nodes are also influenced by one or

more nodes of the cloud (because of the presence of the weights alpha and beta in the

formula). So they also result influenced and also belong the SNA.

The biggest difference between CA and SNA lies in the number of links. If we compute

the average in-degree and out-degree over all the avalanches for each nodes we obtain the

results shown in Table 3.15 and Table 3.16.

We may observe that:

• the number of links is higher in the negative avalanche (as the number of nodes): so

the negative avalanches are composed by more nodes with more links.
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Figure 3.18: Distribution of the number of clock during a CA: log/log graphic

• the average degree is larger in the CA: this fact agrees with the definition of CA.

• it is possible to compute a balance for each node (∆(in-degree)−(out-degree)): if it

is negative we have a node that is more influencing that influenced, if it is positive

is the other way around. This balance is more significant in the SNA where it is

possible observe the dominant role of strong markets as US and Germany (all above

in negative SNA) and, on the other hand, the negligible role of markets as Egypt.

In order to investigate if there are topological differences in CA’s and SNA’s, we can

search for some features of the links (in fact the nodes are the same). For example we

can verify if the graphs representing the avalanches are assortative. A network is said to

show assortative mixing if the nodes in the networks that have many connections tend to

be connected to other nodes with many connections. We use the measure r of assortative

mixing for networks defined by Newman in [39].

Let us consider the CA’s and SNA’s with almost 6 nodes (for small CA’s and SNA’s

the topology is quite the same) and let us compute the coefficient r for each avalanche.

The assortativity coefficient is the Pearson correlation coefficient of degree between pairs

of linked nodes. To simplify let us consider the graphs as undirected. The distribution

of r for the CA’s and for SNA’s is showed in Figure 3.19. We can observe that both

CA’s and SNA’s are, for the most part, disassortative, but for the CA’s this feature is

stronger. Anyhow both distributions are quite Gaussian so we can conjecture that the

avalanches are not characterized by a particular assortativity. In these graphs there is not

the proclivity to link nodes with the same degree and, not even to link nodes with very
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Figure 3.19: Distribution of the coefficient r of CA and SNA: histogram

different degree.

3.4.4 The dynamics of the SNA

After we compared the CA’s and the SNA’s we conclude that the two kinds of ava-

lanches, although if they are based on different assumptions, do not give such various

results. The SNA have the advantage of emphasizing the interaction between the single

markets. Also SNA are more in agreement with the SOC model, who are the reference

models of this study. For these reasons, we chose to study more thoroughly the dynamics

of the SNA.

In order to do this we put our attention on the different roles that the markets have

in the presence of an avalanche. The most important role is assumed by those markets in

which the avalanches start. Let be a node i in which a SNA starts: the node i becomes

critical, not because the network influences it, but because a local news (ηi), or a series

of local news cumulated over time, is able to make the node i critical. The processing of

news is a key building of the model. Furthermore the node i is able to influence other

nodes. This is caused by the relationship between the node i and the other nodes. In the

model this relationship is due to the weights α and β.

If we compute, for each node, the times in which a node is source of a SNA and

we divide it by the total amount of SNA’s, we obtain the ranking shown in Table 3.17.
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Actually in the top positions there are very important markets like Germany, U.S. and

Japan, vice versa in the low positions there are very weak markets like Israel, Egypt and

Australia. This fact confirms that the weights α and β shape the dynamics of the network.

On the other hand the presence, in the top ten, of less capitalized market like Argentina

is due to the high volatility of these markets. The U.S. market has a central position: in

fact, even if it is the largest capitalized market, it does not have a high volatility.

A question that arises when a market has a big loss or gain is: is it starting an

avalanche? And if it is true, how many nodes does it ”overwhelm”? In this regard we can

compute the average number of nodes belonging to an avalanche that starts in a given

market. The Table 3.18 shows this result. The primate of Netherlands is easily explicable:

this market is not contemporaneous to the other European markets but it opens and closes

with an hour of difference. Because the model does not take in account of interaction

between contemporaneous markets, the strong conditioning between European markets

does not emerge, except in relation to the Dutch market. Therefore this primate is caused

by a limit of the model.

By inspection of Table 3.18 let consider the other nodes that are able to influence a

large number of nodes: they are U.K., U.S., Switzerland. Less firmly the Asian markets

like Japan, China, Hong Kong and Taiwan.

Let show an example: on 23rd of May 2013 Tokio closed with a loss of 7%, an avalanche

started and all European market suffered both opening and closing. When U.S. market

closed in the evening basically with no changes, the avalanche stopped without further

damage. We speculate the reason: the influence between Asia and Europe is strong, but

this influence becomes a ”worldwide” influence only if U.S. is involved. A further analysis

on the interaction between Europe, U.S., Asia, etc. has been developed in Section 3.4.5.

3.4.5 The hyper-graph of the Worlds Stock Exchanges Network

The model gives some importance to the interactions between countries belonging to

the same geographical area (using the weight β). On the other hand the model does not

take in account of the intra-daily interactions between markets that open or close at the

same hour. So any interactions between countries in the same time zone are not con-

sidered. It could be interesting to underline the interaction between sets of nodes, making

a set of countries that belong to the same macro-geographical area. A possible choice may
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be:

AUSTRALIA −→ AUSTRALIA

JAPAN, SOUTH KOREA , CHINA, HONG KONG, TAIWAN, SINGAPORE, MALAY-

SIA, INDONESIA, INDIA −→ ASIA

ISRAEL, EGYPT −→ MIDDLE EAST

UK, FRANCE, GERMANY, SWITZERLAND, ITALY, NETHERLANDS, AUSTRIA

−→ EUROPE

ARGENTINE, BRAZIL, MEXICO −→ SOUTH-CENTRAL AMERICA

US, CANADA −→ NORTH AMERICA

Figure 3.20: The hyprgraph representing the World Stock Exchange Network

In graph theory, we are passing by a graph to an hypergraph graph (see Figure 3.20).

If we consider the graph obtained by contraction of nodes, the contract graph obtained

replacing the set of nodes with the geographical area, we have a new graph composed by

6 nodes (Figure 3.21).

Figure 3.21: The contract graph representing the World Stock Exchange Network

40



3.4.5.1 The dynamics of the SNA on the hyper-graph

We can study the avalanches (SNA) on this network. So the movements inside the

macro-area are not considered: in fact only the links between the 6 nodes are maintained.

From 2000 to 2008 are found:

Positive avalanches Negative avalanches

In the network 508 336
In the contract network 420 276

∆ -17.3% -17.9%

This result proves that more than 82% of the avalanches move from a macro-area

to another macro-area. There are only a few number of local avalanches. The contract

network is more concise and studying it allows us to capture some aspects of the network

dynamics.

Studying the avalanches in the contract graph we can consider (see Table 3.20 ) the

frequency of each link on the total amount of the avalanches. The links are oriented and

a link means that the node, from which the link starts, influences the node in which the

link enters. The links more frequent in the SNA are the interactions between ASIA and

EUROPE. Let’s remember that when European markets are opening, the Asian markets

are closing and vice versa. Because the most important news is the closing value of

the stock is evident that they are influencing each other. Furthermore both ASIA and

EUROPE have markets with high volatility, it is likely there are links outgoing from

these nodes. The NORTH-AMERICA has no market with high volatility and so there are

less links from this node. It seems that NORTH-AMERICA influences more ASIA than

EUROPE: this fact is explained in [58], i.e. the European markets are still open when

U.S. market opens up and they have access to part of the history of the open-close of the

U.S. market, on the contrary the Asian markets are still closed.

By inspection of the bottom of the ranking we find the links less present: it means that

there is almost no interaction between AUSTRALIA and the rest of the world. Instead

the MIDDLE-EAST, as shown below, is almost not able to influence AMERICA (North,

South and Central) and AUSTRALIA.

It could be interesting to underline, for each node, the frequency, on the total amount

of avalanches, of links incoming and outgoing and the balance between them. A negative

balance means that the node is more influenced, than influencing, by the others; a positive
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balance vice versa. In the Figure 3.22, Figure 3.23, Figure 3.24, Figure 3.25, Figure 3.27,

Figure 3.26, we can see, for each node, a graph showing the balance of the link frequency

and in the Table 3.19 the relative values.

There are two nodes that are only influenced or influencing the others and they are

NORTH AMERICA (Figure 3.24 ), that is only influencing the rest of the world, and

MIDDLE EAST (Figure 3.26 ) that is only influenced. It is evident that this fact is caused

by the different importance of markets present in NORTH AMERICA and in MIDDLE

EAST, the other nodes play both the roles even if the strength of the interaction is very

different for every Macro Area.

Figure 3.22: The link’s balance
of ASIA

Figure 3.23: The link’s balance
of EUROPE

Figure 3.24: The link’s balance
of NORTH AMERICA

Figure 3.25: The link’s bal-
ance of SOUTH and CENTRAL
AMERICA

Figure 3.26: The link’s balance
of MIDDLE EAST

Figure 3.27: The link’s balance
of AUSTRALIA
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Market From finance.yahoo.it From Bloomberg

AUSTRALIA AORD AS30 INDEX
JAPAN N225 NKY INDEX
SOUTH KOREA KS11 KOSPI INDEX
CHINA SSSEC SSE50 INDEX
HONG KONG HSI HSI INDEX
TAIWAN TWII TWSE INDEX
SINGAPORE STI FSSTI INDEX
MALAYSIA KLSE FBMKLCI INDEX
INDONESIA JKSE JCI INDEX
INDIA BSESN SENSEX INDEX
ISRAEL TA100 TA-100 INEDX
EGYPT CCSI EGX70 INDEX
U.K. FTSE UKX INDEX
FRANCE FCHI CAC INDEX
GERMANY GDAX DAX INDEX
SWITZERLAND SSMI SMI INDEX
ITALY MIBTEL FTSEMIB INDEX
NETHERLANDS AEX AEX INDEX
AUSTRIA ATX ATX INDEX
ARGENTINE MERV MERVAL INDEX
BRASIL BVSP IBOV INDEX
U.S. GSPC INDEX
CANADA GSPTSE SPTSX INDEX
MEXICO MXX MEXBOL INDEX

Table 3.3: List of Indices
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Market Event Time of event Clock of the model

AUSTRALIA C/O 0:00 1
SOUTH KOREA C/O 1:00 2
JAPAN C/O 1:00 2
MALAYSIA C/O 2:00 3
SINGAPORE C/O 2:00 3
TAIWAN C/O 2:00 3
HONG KONG C/O 2:15 3
CHINA C/O 2:15 3
INDONESIA C/O 3:28 4
INDIA C/O 4:30 5
AUSTRALIA O/C 6:20 6
TAIWAN O/C 6:35 6
SOUTH KOREA O/C 7:05 7
JAPAN O/C 7:30 7
CHINA O/C 8:05 8
ISRAEL C/O 8:30 8
NETHERLANDS C/O 9:00 9
AUSTRIA C/O 9:00 9
FRANCE C/O 9:00 9
GERMANY C/O 9:00 9
ITALY C/O 9:00 9
SWITZERLAND C/O 9:00 9
U.K. C/O 9:00 9
HONG KONG O/C 9:15 9
EGYPT C/O 9:30 9
MALAYSIA O/C 10:00 10
SINGAPORE O/C 10:15 10
INDONESIA O/C 10:15 10
INDIA O/C 11:45 11
EGYPT O/C 13:30 12
BRASIL C/O 14:00 12
CANADA C/O 14:30 12
U.S. C/O 14:30 12
ARGENTINA C/O 15:00 12
MEXICO C/O 15:30 12
ISRAEL O/C 17:00 13
SWITZERLAND O/C 17:35 13
ITALY O/C 17:40 13
AUSTRIA O/C 17:45 13
FRANCE O/C 17:45 13
GERMANY O/C 17:45 13
U.K. O/C 17:50 13
NETHERLANDS O/C 18:30 14
ARGENTINA O/C 21:00 15
BRASIL O/C 21:15 15
U.S. O/C 21:15 15
CANADA O/C 21:30 15
MEXICO O/C 22:00 16

Table 3.4: Sequence of events in World’s Stock Exchange Network
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critical positive critical negative Total amount

no influenced no influenced influenced no influenced no influenced influenced

no influencing influencing no influencing influencing

AUSTRALIA 17 19 44 6 8 52 146
JAPAN 47 37 72 50 45 70 321
SOUTH KOREA 74 59 134 66 57 128 518
CHINA 84 49 51 80 30 60 354
HONG KONG 34 41 114 28 40 116 373
TAIWAN 66 64 100 74 58 103 465
SINGAPORE 9 13 109 9 5 122 267
MALAYSIA 22 22 47 14 12 58 175
INDONESIA 40 29 118 36 13 100 336
INDIA 67 53 141 58 36 118 473
ISRAEL 24 22 100 24 17 94 281
EGYPT 25 0 81 17 0 56 179
U.K. 14 29 59 8 28 70 208
FRANCE 28 62 83 30 61 90 354
GERMANY 31 66 69 30 69 65 330
SWITZERLAND 20 35 88 20 39 82 284
ITALY 12 26 82 10 26 100 256
NETHERLANDS 11 22 129 12 18 148 340
AUSTRIA 46 25 65 22 24 66 248
ARGENTINE 116 54 92 97 37 94 490
BRASIL 80 69 88 75 54 77 443
U.S. 40 38 23 48 45 15 209
CANADA 29 24 65 22 28 57 225
MEXICO 45 30 102 23 17 95 312

Table 3.8: Activity in SNA: number of times in which a node is critical
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critical no influenced critical no influenced critical

and no influencing but influencing influenced

AUSTRALIA 15.1% 16.5% 68.9%
JAPAN 27.6% 24.1% 50.1%
SOUTH KOREA 26.8% 25.3% 60%
CHINA 43.1% 19.1% 38.8%
HONG KONG 14.4% 20.8% 72.7%
TAIWAN 30.8% 28.8% 47.4%
SINGAPORE 6.7% 6.7% 92%
MALAYSIA 18.9% 22.4% 62.1%
INDONESIA 22.5% 13.7% 68.7%
INDIA 26.5% 20.5% 63.1%
ISRAEL 15.6% 16.7% 72.1%
EGYPT 20.6% 2.2% 77%
U.K. 7.2% 17.7% 75%
FRANCE 16.7% 33.2% 57.9%
GERMANY 18% 38.6% 46.1%
SWITZERLAND 13.7% 26.7% 65%
ITALY 6.1% 19.4% 80.1%
NETHERLANDS 5% 11.7% 91.4%
AUSTRIA 24.1% 20.5% 55.2%
ARGENTINE 40.3% 19.8% 43.3%
BRASIL 31.4% 27.6% 41.1%
U.S. 26.4% 35.5% 38.4%
CANADA 18.5% 22.8% 65.7%
MEXICO 18% 17.6% 64.6%

Table 3.9: Different roles of the node in SNA: influencing or influenced?
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critical positive critical negative Total amount

no influenced no influenced influenced no influenced no influenced influenced

no influencing influencing no influencing influencing

AUSTRALIA 16 17 47 6 7 53 146
JAPAN 43 36 77 44 40 81 321
SOUTH KOREA 66 59 142 58 58 135 518
CHINA 76 42 66 75 25 70 354
HONG KONG 26 36 127 24 36 124 373
TAIWAN 63 65 102 71 60 104 465
SINGAPORE 9 11 111 8 6 122 267
MALAYSIA 19 25 47 13 13 58 175
INDONESIA 38 31 118 34 13 102 336
INDIA 61 54 146 53 34 125 473
ISRAEL 20 26 100 22 19 94 281
EGYPT 21 3 82 16 1 56 179
U.K. 9 20 73 6 17 83 208
FRANCE 26 56 91 29 53 99 354
GERMANY 29 61 76 29 63 72 330
SWITZERLAND 19 34 90 18 38 85 284
ITALY 9 24 87 6 23 107 256
NETHERLANDS 8 18 136 8 19 151 340
AUSTRIA 40 29 67 20 22 70 248
ARGENTINE 105 56 101 86 38 104 490
BRASIL 75 66 96 64 56 86 443
U.S. 27 33 41 28 41 39 209
CANADA 22 24 72 17 24 66 225
MEXICO 40 33 104 16 22 97 312

Table 3.13: Activity in CA: number of times in which a node is critical
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critical no influenced critical no influenced critical

and no influencing but influencing influenced

AUSTRALIA 15.1% 16.5% 68.9%
JAPAN 27.6% 24.1% 50.1%
SOUTH KOREA 26.8% 25.3% 60%
CHINA 43.1% 19.1% 38.8%
HONG KONG 14.4% 20.8% 72.7%
TAIWAN 30.8% 28.8% 47.4%
SINGAPORE 6.7% 6.7% 92%
MALAYSIA 18.9% 22.4% 62.1%
INDONESIA 22.5% 13.7% 68.7%
INDIA 26.5% 20.5% 63.1%
ISRAEL 15.6% 16.7% 72.1%
EGYPT 20.6% 2.2% 77%
U.K. 7.2% 17.7% 75%
FRANCE 16.7% 33.2% 57.9%
GERMANY 18% 38.6% 46.1%
SWITZERLAND 13.7% 26.7% 65%
ITALY 6.1% 19.4% 80.1%
NETHERLANDS 5% 11.7% 91.4%
AUSTRIA 24.1% 20.5% 55.2%
ARGENTINE 40.3% 19.8% 43.3%
BRASIL 31.4% 27.6% 41.1%
U.S. 26.4% 35.5% 38.4%
CANADA 18.5% 22.8% 65.7%
MEXICO 18% 17.6% 64.6%

Table 3.14: Different roles of the node in CA: influencing or influenced?
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AUSTRALIA 0.41 0.34 0.06 0.89 0.81 0.08 0.65 0.58 0.07
JAPAN 0.53 0.62 -0.09 0.93 1.44 -0.51 0.73 1.03 -0.3
SOUTH KOREA 0.94 1.01 -0.07 1.72 1.8 -0.09 1.33 1.41 -0.08
CHINA 0.51 0.45 0.06 1.25 0.75 0.49 0.88 0.6 0.28
HONG KONG 0.93 0.87 0.06 1.75 1.86 -0.11 1.34 1.36 -0.03
TAIWAN 0.76 0.75 0.01 1.71 1.61 0.1 1.23 1.18 0.05
SINGAPORE 0.89 0.58 0.32 2.15 1.35 0.8 1.52 0.96 0.56
MALAYSIA 0.22 0.24 -0.02 0.76 0.7 0.07 0.49 0.47 0.02
INDONESIA 0.72 0.53 0.19 1.79 1.14 0.64 1.26 0.84 0.42
INDIA 0.88 0.88 0 1.68 1.66 0.02 1.28 1.27 0.01
ISRAEL 0.83 0.52 0.31 1.78 1.15 0.63 1.3 0.84 0.47
EGYPT 0.62 0.17 0.46 1.16 0.48 0.68 0.89 0.32 0.57
UK 0.71 0.58 0.13 1.59 1.3 0.29 1.15 0.94 0.21
FRANCE 0.68 0.87 -0.19 1.35 1.78 -0.43 1.02 1.33 -0.31
GERMANY 0.41 0.91 -0.5 0.81 1.82 -1.01 0.61 1.37 -0.76
SWITZERLAND 0.61 0.77 -0.16 1.22 1.59 -0.37 0.91 1.18 -0.26
ITALY 0.68 0.68 0.01 1.64 1.52 0.12 1.16 1.1 0.06
NETHERLANDS 0.94 0.83 0.11 1.93 1.89 0.04 1.44 1.36 0.08
AUSTRIA 0.36 0.47 -0.11 0.84 1.28 -0.45 0.6 0.87 -0.28
ARGENTINE 0.56 0.68 -0.12 1.18 1.34 -0.16 0.87 1.01 -0.14
BRAZIL 0.52 0.89 -0.37 1.05 1.54 -0.49 0.78 1.21 -0.43

US 0.46 0.59 -0.13 0.79 1.24 -0.44 0.63 0.91 -0.29
CANADA 0.53 0.53 0 1.04 1.21 -0.17 0.78 0.87 -0.08
MEXICO 0.62 0.59 0.03 1.39 1.13 0.27 1.01 0.86 0.15

average 0.64 0.64 0 1.35 1.35 0 0.99 0.99 0

Table 3.15: Average in-degree and out-degree in CA
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AUSTRALIA 0.31 0.26 0.05 0.62 0.62 0 0.47 0.44 0.03
JAPAN 0.37 0.56 -0.19 0.6 1.28 -0.68 0.49 0.92 -0.43
SOUTH KOREA 0.64 0.8 -0.15 1.14 1.4 -0.26 0.89 1.1 -0.21
CHINA 0.21 0.4 -0.18 0.52 0.62 -0.1 0.37 0.51 -0.14
HONG KONG 0.57 0.76 -0.19 0.99 1.59 -0.6 0.78 1.18 -0.39
TAIWAN 0.6 0.57 0.04 1.2 1.1 0.11 0.9 0.83 0.07
SINGAPORE 0.73 0.33 0.41 1.78 0.61 1.17 1.25 0.47 0.79
MALAYSIA 0.2 0.13 0.07 0.72 0.3 0.42 0.46 0.22 0.25
INDONESIA 0.68 0.32 0.35 1.53 0.5 1.03 1.1 0.41 0.69
INDIA 0.65 0.65 0 1.14 1.2 -0.06 0.89 0.93 -0.03
ISRAEL 0.74 0.25 0.49 1.51 0.44 1.07 1.12 0.34 0.78
EGYPT 0.58 0.03 0.55 1.04 0.03 1.01 0.81 0.03 0.78
UK 0.28 0.49 -0.21 0.75 1.13 -0.38 0.52 0.81 -0.3
FRANCE 0.45 0.74 -0.3 0.85 1.52 -0.68 0.65 1.13 -0.49
GERMANY 0.28 0.74 -0.46 0.52 1.46 -0.94 0.4 1.1 -0.7
SWITZERLAND 0.52 0.54 -0.03 0.89 1.15 -0.26 0.7 0.84 -0.14
ITALY 0.51 0.51 0 1.13 1.07 0.07 0.82 0.79 0.03
NETHERLANDS 0.74 0.58 0.17 1.47 1.36 0.12 1.11 0.97 0.14
AUSTRIA 0.31 0.21 0.1 0.67 0.48 0.19 0.49 0.35 0.15
ARGENTINE 0.44 0.44 0 0.83 0.91 -0.07 0.64 0.67 -0.04
BRAZIL 0.35 0.7 -0.34 0.64 1.1 -0.46 0.5 0.9 -0.4

US 0.12 0.48 -0.37 0.1 1.04 -0.94 0.11 0.76 -0.65
CANADA 0.32 0.37 -0.05 0.53 0.87 -0.34 0.42 0.62 -0.19
MEXICO 0.53 0.28 0.24 1.03 0.45 0.57 0.78 0.37 0.41

average 0.46 0.46 0 0.93 0.93 0 0.69 0.69 0

Table 3.16: Average in-degree and out-degree in SNA
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Percentage of times in which in a market starts a SNA

GERMANIA 15.8%

FRANCE 14.4%

BRAZIL 14.4%

TAIWAN 14.3%

SOUTH KOREA 13.6%

ARGENTINE 10.7%

INDIA 10.4%

US 9.7%

JAPAN 9.6%

HONG KONG 9.5%

CHINA 9.3%

SWITZERLAND 8.7%

UK 6.7%

ITALY 6.1%

CANADA 6.1%

AUSTRIA 5.8%

MEXICO 5.5%

INDONESIA 4.9%

NETHERLANDS 4.7%

ISRAEL 4.6%

MALAYSIA 4.0%

AUSTRALIA 3.2%

SINGAPORE 2.1%

EGYPT 0%

Table 3.17: The ranking of the markets in which a SNA starts
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Average number of nodes belonging to an avalanche that starts from a market

Positive SNA Negative SNA SNA

AUSTRALIA 12.3 7.5 9.9
JAPAN 9.4 5.6 7.5
SOUTH KOREA 10.5 9.4 10
CHINA 5.9 9.2 7.5
HONG KONG 8.6 7.1 7.8
TAIWAN 8 8.6 8.3
SINGAPORE 8.7 5 6.8
MALAYSIA 4.5 5.2 4.8
INDONESIA 5.8 8.2 7
INDIA 9.2 6.8 8
ISRAEL 8.8 5.6 7.2
EGYPT 0 0 0
UK 15.2 5.1 10.2
FRANCE 12.8 6.8 9.8
GERMANY 10.8 7.5 9.1
SWITZERLAND 10.2 12 11.1
ITALY 11.3 6.2 8.7
NETHERLANDS 10.5 19 14.8
AUSTRIA 9 5.8 7.4
ARGENTINE 7.4 7.5 7.5
BRAZIL 9.8 6.8 8.3
US 14 7.3 10.6
CANADA 7.3 7.3 7.3
MEXICO 9.3 9.3 9.3

Table 3.18: The number of nodes, in average, swept away by an avalanche SNA starting
from a given market
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ASIA versus link’s balance

AUSTRALIA -0.8%

EUROPE 6.4%

MIDDLE EAST 18%

NORTH AM -14.6%

SOUTH-CENTR AM -17.9%

AUSTRALIA versus link’s balance

ASIA 0.8%

EUROPE 0.1%

MIDDLE EAST 4.4%

NORTH AM -2.8%

SOUTH-CENTR AM -2.3%

MIDDLE EAST versus link’s balance

ASIA -18%

AUSTRALIA -4.4%

EUROPE -7.6%

NORTH AM -9.1%

SOUTH-CENTR AM -12.7%

SOUTH-CENTR AM versus link’s balance

ASIA 17.9%

AUSTRALIA 2.3%

EUROPE -10.5%

MIDDLE EAST 12.7%

NORTH AM -1.3%

NORTH AM versus link’s balance

ASIA 14.6%

AUSTRALIA 2.8%

EUROPE 3.4%

MIDDLE EAST 9.1%

SOUTH-CENTR AM 1.3%

EUROPE versus link’s balance

ASIA -6.4%

AUSTRALIA -0.1%

MIDDLE EAST 7.6%

NORTH AM -3.4%

SOUTH-CENTR AM 10,5%

Table 3.19: Link’s balance in the Macro Area Network
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# Pos.SNA =420 # Neg.SNA =276

Links in Links in Average

Pos.SNA Neg.SNA

# % # % %

ASIA EUROPE 183 43.5% 144 52.1% 47.8%
EUROPE ASIA 161 38.3% 123 44.5% 41.4%
EUROPE SOUTH-CENTR AM 125 29.7% 104 37.6% 33.7%
SOUTH-CENTR AM ASIA 128 30.4% 99 35.8% 33.1%
ASIA MIDDLE EAST 125 29.7% 87 31.5% 30.6%
SOUTH-CENTR AM EUROPE 93 22.1% 67 24.2% 23.2%
NORTH AM ASIA 76 18% 75 27.1% 22.6%
EUROPE MIDDLE EAST 70 16.6% 52 18.8% 17.7%
NORTH AM EUROPE 62 14.7% 57 20.6% 17.7%
SOUTH-CENTR AM MIDDLE EAST 74 17.6% 47 17% 17.3%
ASIA SOUTH-CENTR AM 61 14.5% 44 15.9% 15.2%
EUROPE NORTH AM 52 12.3% 45 16.3% 14.3%
MIDDLE EAST ASIA 48 11.4% 38 13.7% 12.5%
AUSTRALIA ASIA 40 9.5% 32 11.5% 10.5%
MIDDLE EAST EUROPE 32 7.6% 35 12.6% 10.1%
ASIA AUSTRALIA 35 8.3% 31 11.2% 9.7%
NORTH AM MIDDLE EAST 30 7.1% 34 12.3% 9.7%
ASIA NORTH AM 37 8.8% 20 7.2% 8%
NORTH AM SOUTH-CENTR AM 27 6.4% 24 8.6% 7.5%
SOUTH-CENTR AM NORTH AM 27 6.4% 17 6.1% 6.2%
AUSTRALIA EUROPE 16 3.8% 21 7.6% 5.7%
EUROPE AUSTRALIA 15 3.5% 21 7.6% 5.5%
AUSTRALIA MIDDLE EAST 16 3.8% 18 6.5% 5.1%
MIDDLE EAST SOUTH-CENTR AM 19 4.5% 13 4.7% 4.6%
SOUTH-CENTR AM AUSTRALIA 16 3.8% 13 4.7% 4.2%
NORTH AM AUSTRALIA 11 2.6% 15 5.4% 4%
AUSTRALIA SOUTH-CENTR AM 7 1.6% 6 2.1% 1.9%
AUSTRALIA NORTH AM 3 0.7% 5 1.8% 1.2%
MIDDLE EAST AUSTRALIA 3 0.7% 2 0.7% 0.7%
MIDDLE EAST NORTH AM 2 0.4% 2 0.7% 0.6%

Table 3.20: Link in SNA on the Macro Area Network
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Chapter 4

Case of study: Interlocking
directorates

4.1 Introduction

Interlocking Directorates are links that are established between companies when a

director of a company sits on the board of directors of other companies. They have been

defined by Mirzuchi in [36].

The interlocking directorates may be direct or indirect. The first situation arises when

two companies share an administrator, the latter happens if two companies have at least

one director who is on the board of a third company.

For this reason an approach based on network theory is suitable to describe these

horizontal linkages between companies: the companies become the nodes of the network

and shared directors represent the links.

Large part of literature has been developed on this topic: using the network theory in

order to explain the interlock phenomenon and empirical studies on various countries have

shown that this kind of network is characterized by a topological structure that tends to

persist over time while still maintaining its structural properties (see Section 4.2).

The object of our case of study is the dynamic evolution of the interlocking directorate

network referring to the Italian case.

To discover how the structure evolves over time (14 years) we examine an extensive

database: in particular, we are interested in determining the role played by directors in

the network structure.

In spite of recent improvements in corporate governance that should limit interlocks,

they are also an important characteristic of Italian capitalism.

Using the same methodology proposed by [34], we could assess if in Italy, as in the
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German case, a connected and stable structure emerges, due to the presence of directors

with multiple mandates. As a result, we find a network structure characterized by a

”core”, due to the presence of a few directors with multiple assignments and this core is

stable (over time), but, unlike the German case, not connected. This result is consistent

with the literature on the Italian case, as explained below.

Also, we investigate the nature of the stable links over time; to this end we propose an

alternative approach based on dynamic networks that allows us to investigate the stability

of the links also identifying their percentages of stability as time passes.

The analysis is performed by quantifying the variation of links in a time period. Then

we construct a unique cumulative network, where nodes are companies and the existence

of an edge is related with the persistence over time of an interlock between two companies.

We think it is of interest to determine whether the ties persisting between firms are

due to a stable presence of directors with the same mandate for years, or the persistence

occurs despite a turnover effect.

For instance looking at the stability in all time period (from 1998 to 2011 with 100%

of stability) the resulting emerging structure has few connected components, each very

cohesive, i.e. with a high density.

This states, on one hand, that Italy is characterized since many years back by a gov-

ernance structure at serving of the ownership, which cannot be separated from sharehold-

ing control of a few important family groups. On the other hand, there is a component

in which large Italian firms both in financial sector and industry are connected to each

other by sharing their directors. Our work offers a further contribution to the literature

on dynamic networks. Indeed, although the time dimension is projected on a unique static

network, the methodology that we propose captures the time variability of the links better

than other dynamical networks that project the time dimension into a static structure (see

Section 2.3).

4.2 Overview of literature

In the literature many articles refer to the study of network’s properties in the corporate

board context, at first we focus attention to the Italian case.

Gambini et al. [22] present an analysis of the Italian interlocks, in particular they

distinguish interlocks between banks, banks/firms, firms. They underline the presence of
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many ties between banks: direct and indirect. They also detail the interlocks distinguish-

ing whether the interlock is due to an executive director or to a non-executive director.

They state that interlock continues to be one of the most important channels of link

between businesses in Italy: the number of links between the companies listed in Italian

Stock Exchange is very high, as is the case in other countries. In particular, they found

that the Blue Chips are a more homogeneous and connected network, while the network

formed by banks has a almost linear structure. The connections do not affect all companies

equally, but there is a considerable degree of concentration within groups of companies

that share part of their directors.

Carbonai and Di Bartolomeo [15] present a paper that investigates the Italian insurance

system by analyzing the interlocks. The investigation follows a two-step procedure: first, it

analyzes the network of the insurance industry by focusing on interlocks; second, network

statistics are combined in synthetic indices through principal component analysis in order

to verify a correlation between indices and companies’ market shares. The analysis is

limited to non-life insurances, which are indeed the least competitive and the most closed

compared to the competition of other financial agents (life insurances compete with other

forms of financial investments). The study is limited to only one year (2004) and uses

the data of the ANIA, the Italian Association of Insurance Companies. They state that

interlocks are indicators of potential power relationships between companies and it cannot

be inferred that directors exploit networks of board memberships merely because such

potential exists. Interlocking directors seem to be used by insurance companies to support

a large cartel that dominates the market. By placing a director on a cartel partner’s board,

each cartel member has an observer in place who can monitor activities such as plans to

reduce price, expand capacity, or introduce new products that could undermine the cartel

agreement. Interlocking directorates can help minimize trust problems by putting insiders

in places where they can both monitor and affect what other companies are doing. Thus,

in Italy the interlocking directors seem to be the instrument used by insurance cartel to

maintain its stability.

An extensive work has been done by Rinaldi and Vasta ([45], [46], [47], [48] ). Their

studies describe in detail the structure of Italian capitalism and, the latter, during the

1913-2001 period by using network analysis techniques, focused on seven benchmark years

(1913,1927,1936,1960,1972,1983 and 2011). Each benchmark year is analyzed by means
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of the network composed by the top 250 companies and it is integrated by a historical

and structural analysis. The paper highlights some different phases in the evolution of

the Italian interlocking directorates and they are considered a consequence to some major

institutional break-ups: the crisis of the German-type universal banks and the creation

of large state-owned sector of the economy in the early 1930s, the nationalization of the

electricity industry in 1962; a massive privatization of state-owned enterprises in the 1990s

and the emergence of the technological trajectory of the third industrial revolution in the

1983s.

They found that the network is very cohesive from 1913 to 1960 with a maximum in

1927 because of the influence of the German-type universal banks. After the nationaliz-

ation of the electricity industry in 1972 the network decreased its cohesion, but the fall

in the degree of cohesion appears in 1983 and 2001. They measure the cohesion of the

network by using two centrality indices: degree centrality and betweennees centrality.

Santella et al. in a first paper [54] analyze the Italian situation from 1998 to 2006 and

in a second [53] from 1998 to 2007. In the first paper they focus on stability over time in the

number of directorships: directors who have just one, two or three appointments, unlikely

enter in the director category with multiple appointments. They conclude that a great

number of Italian companies are connected to each other by a small number of directors,

whom maintain permanently their appointment over time and are defined ”Lords of the

Italian Stock Market” by the authors.

In the second paper they focus on the relationship between interlocking directorships

and company performance for the main companies listed on the Italian stock market. They

use a unique dataset that includes two distinct groups of variables: corporate governance

variables related to board size and interlocking directorships and a group of variables

related to the economic and financial performance of the companies considered. They find

that the corporate governance reforms introduced over the period considered have shown

some effectiveness by slightly dispersing the network of companies and that interlocking

directorships are negatively related with company performance.

Larcker and al. seem to have a different opinion [31]: they assess that firms with

central boards of directors earn superior risk-adjusted stock returns. Using data referring

to the U.S. stock exchange from 2000 to 2007 they map the board network and they

compute four centrality measures: degree, closeness, betweenness and eingenvector. Then
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they do a regression analysis with these measures, stock return and other measures of

firm performance. They find the balance of the potential costs and benefits associated

with board networks and they establish several regularities regarding the relation between

board centrality and multiple measure of firm performance.

Also Yeo et al. ([61]) find a positive relationship between the number of director

interlocks and their firms’ performance measured by ROA. They use a sample consisting

of 246 firms from major sectors of the French economy in 1999. They investigate factors

explaining interlocking directorates: their results indicate that directors of larger firms

hold more interlocks. Finally they find evidence that directors hold more interlocks when

a block-holder is present on the board.

Santella et al. [54] also propose a comparison of Italian, French, German, UK and US

listed Blue Chips. An analysis of the interlocking directorships among the five countries is

performed. They found that two models stand out. On the one hand a model made of a

high number of companies linked to each other through a small number of shared directors

who serve on several company boards at the time (France, Germany, and Italy). On the

other hand, in the UK much fewer companies are connected to each other and essentially

through directors who have no more than two board positions at a time. An intermediate

case is represented by the US, where a high number of companies are connected to each

other just like Germany, France, and Italy. However, just like the UK, such connections

are made through directors who tend to have just two board positions at time, a sign that,

unlike Italy, Germany, and France, the UK and US networks might not be functional to

systemic collusion.

In agreement with Santella, the work relating to the German stock market proposed by

Alfarano et al. is [1]. They analyze the corporate board network in the case of Germany

and their methodology has been later extended to a dynamical approach by Milakovic

et al. [35]: they found, in both director and board network, a ”persistent core”, despite

the great turnover in the identity of core directors over time. They suggest that both

the reconstruction of broken ties among large corporations, as well as their preference for

recruiting experienced directors with multiple board memberships, are responsible for the

time persistence of a network core.

Heemskerk et al. [26] extend the network analysis to Europe. They consider the

companies of Eurofirst top 300 index and build the board network in 2005 and 2010.
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They show that in 2010 the European board network is stronger than five years earlier,

i.e. the network increases its density. They suggest that this structure can be a basis for

overcoming the present euro crisis.

We only mention a part of literature (see [9], [14], [20],[18],[49]) that analyze the small

world structure of the board or director network, i.e. a network where the distance between

two randomly chosen nodes grows proportionally to the logarithm of the number of nodes

N of the network.

4.3 Data set and networks construction

We study the composition of boards in Italy from 1998 to 2011. All the informa-

tion concerning the composition of the board of the companies are listed on Borsa Itali-

ana, the Italian Stock Exchange and are provided by Assonime, the Association of Joint

Stock Companies incorporated in Italy1. The governance of the listed companies in Italy

generally adopted the traditional model which is characterized by a board of directors

(Consiglio di Amministrazione) and a board of statutory auditors (Collegio sindacale),

both appointed by the shareholders. Generally, the majority of the board is composed

by non-executive directors (about the roles of latter see [11]); unless decided by internal

regulatory choices, the board of a firm stays for three years, but the appointment of a

director can be confirmed for more one mandate. Only few Italian companies adopted the

dualistic model, with two separate committees (Supervisory and Management), similar to

the model adopted by Germany.

Using this data set, for each year of the sample we study the interlocking structure in

Italy constructing two networks (that we will call board network and director network).

Let n and q be respectively the number of companies and directors; the board network

is a weighted graph of n nodes/companies, in which every pair of nodes is connected by

a weighted edge if they have at least one common director. In this network, nodes are

the companies and two nodes i and j are connected by an edge of weight bij (bij integer,

bij ≥ 1) if they have bij common directors. Similarly, the director network is a weighted

graph of q nodes/directors in which every pair of directors i, j is connected by a weighted

edge (of weight dij) if they sit in dij company’s boards.

The above mentioned graphs can be associated to suitable matrices obtained in the

1Associazione tra le Società Italiane per Azioni.
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following way. Let M be a matrix of order q×n such that mij = 1 if director i sits on the

board of company j, mij = 0 otherwise. We construct the n−square matrix B′ = MTM,

where the off-diagonal entries are the weights of the edges, whereas the diagonal entry b′ii

is the size of the i-th company’s board (i = 1, ..., n), and the q−square matrix D′ = MMT ,

where the off-diagonal entries are the weights of the edges, whereas the diagonal entry d′jj

(j = 1, ..., q) gives the total number of jth director’s mandates.

The same matrices B′ and D′ can be costructed by the bipartite graph, representing

the relationship between boards and directors, passing to its one-mode projection (see [14]

and [9] for a more detailed description). We set all the diagonal entries of B′ and D′ equal

to zero and all the weights b′ij and d′ij equal to 1, obtaining exactly the adjacency matrices

associated with these graphs: B and D.

Some preliminary remarks can be made through an overall look at the board network

structure. For every year of the sample these networks are characterized by a quite similar

topology. They have many isolated nodes, few connected components (often formed by

two vertices and one edge) and one component with most nodes (over 70% of the total

number of the companies) which we call the main component. The main component is an

usual presence in networks describing interlocking directorates (see [14], [9], [41]), because

in general most companies tend to be connected to each other via direct and indirect

relationships. This explains the special attention we reserve to the analysis of the main

component.

Table 4.1 summarizes some descriptive statistics of the board network B and some

information concerning the number of directors and their appointments.

The board network shows similar parameter values year by year; the total number of

companies ranges from 235 to 301; board size tends to slightly increase on average, but

company links (here computed by counting the number of links between companies in the

un-weighted network) tend to reduce.

Focusing on the main component, some additional characteristics emerge. Network

density is the sum of the degrees divided by n (n− 1) , where n is the number of the

companies/nodes of the network. A high number of links among the companies implies a

high density value in the board network. This parameter therefore gives an idea of how

intense the ties in the network are. The main component size tends to increase as the

total number of companies in the network increases, at the same time the density of the
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main component is low and it tends to decrease, whereas its size slightly increase. This

fact seems suggest that the connections among the companies are not particularly intense.

Other remarks concerning the trend of number of director and their appointments are

reported in the next section.

4.4 Evolution of interlocking directorates

To analyze how the structure of interlocking directorates evolves, we think important

to give a look at how the structure of the directorships changes over time. Concerning the

case of Italy, the mainstream literature showed a structure of the board network which

remained cohesive for a long time, reinforced by the presence of a small group of directors

with multiple assignments (they are often CEOs in one of the companies, or important

shareholders).

Referring to Table 4.1, unlike what was found in [35], in Italy we do not observe a

slight and constant decrease in the number of directors and mandates. On the contrary,

the number of directors, as well as the number of mandates, grows until 2009, with the

exception of a slight decrease between 2001 and 2003. From 2009 the values start to

slightly decrease. This trend is also due to the peculiarity of the Italian situation, because

since 1998 new laws contributed to reform the corporate governance2, although before

2012 there was no restrictions on multiple mandates. Only in 2012 the prohibition of

accepting or exercising positions between firms or groups of competitors operating in the

credit markets, insurance and finance (so-called ”non-interlocking”) became law3.

4.4.1 The core of German Stock Exchange versus the core of Italian
Stock Exchange

Looking at the number of links between companies, which is expression of the multiple

board memberships, we observe a clear decrease only after 2005, even if this phenomenon

is less intense with respect to the German case (see [35]).

To assess the influence of directors with multiple directorships in the board structure

we use the same methodology proposed in [35]. We construct the bipartite graph repres-

enting the connections between directors and companies; from it we extract, by 1-mode

projection, the sub-graph of companies with directors whose number of interlocks exceeds

2D.L. nr. 58/1998, D.L. nr. 6/2003.
3Law nr. 214/2011.
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a certain threshold b. This will also allow us to compare the Italian situation with the

German case, highlighting similarities and differences. The sample analyzed in the Italian

case encloses all listed companies from the Italian Stock Exchange and it is therefore wider

than the sample of the German case, as in [35] the analysis is restricted to companies listed

on the DAX and MDAX (equivalent to the Blue Chips in Italy). Also, we analyze the

incidence of interlocks for 4 years of the sample, instead of 3 years of the German sample.

Given that the number of companies taken into consideration is higher, the number of

directors is much higher than that of Germany.

Focusing to the evolution of the interlock, the number of directors appointed at least

once within 14 years is 6373. Among these, the total number of directors giving rise to

interlocks within a time interval of 14 years is 3957. These are directors who simultaneously

serve on different boards. Therefore, we construct a bipartite graph that is formed by 3957

directors and 454 companies. From it we extract the sub-graph formed by directors that

have at least b interlocks, where 2 ≤ b ≤ 7. - Table 4.2 shows the sub-graph extracted for

different values of b in 4 years (1998, 2002, 2006, 2010). Using the same terminology as in

[35] we call this sub-graph b-core4.

By inspection of Table 4.2, we observe, as expected, that the number of directors with

multiple directorships decreases as b increases. This is more evident in recent years: in

2006, 7 directors have had at least 6 appointments; only one director has had 7 appoint-

ments. In 2010 only two directors have had 6 assignments (in this case it not possible to

compute the density) and none has had 7 appointments. In [53], [45], and [46] the authors

claim that the presence of a few directors with multiple mandates is a feature of the Italian

system, but this is also basically what happens in the German being equal the number of

mandates.

For small values of b (b = 2, 3, 4), in each of the examined years the majority of directors

with multiple directorships tend to be connected together in a single large component.

However already for b = 2 other connected components appear, each with a few nodes.

Some of them are cliques (as in 2006 for b = 3 or in 2010 for b = 5). The situation is

different in the German case, which is always characterized by a single, highly connected

and dense component.

To complete the analysis we plot the density of the b−core. Examining the pattern for

4b-core is used with the same meaning as used in [35], which is different from the definition of k-core
introduced and used by Seidman in [52].
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each of the years, we observe that the density increases with the b−core, similarly to the

German case (Figure 4.1).

Figure 4.1: Core density trends vs b-core.

Therefore the most striking difference with respect to the analysis performed in [35]

for the German case seems to be that in Italy there is a core of directors with multiple

directorships which is dense, but not connected. In the German case all biggest firms are

connected to each other, whereas the Italian situation is characterized by small networks

(of companies in many cases also very cohesive).

The reasons can be searched in the different rules of corporate governance between

the two Countries. As pointed out in [35] and in [1], where the analysis of the German

case is performed for just one year, the core structure in Germany’s corporate network is

centered around many highly capitalized companies, whose role is then fundamental for

the existence of this connected core. On the contrary, in Italy historically the presence of a

few family groups influence the director appointments, affecting the management decisions

of the companies. Another aspect concerns the ownership, since in the past the executive

directors were strongly related to important shareholders, although the recent laws tried

to reform this aspect. This could explain the presence of few dense connected components
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instead of one component densely connected.

Our findings seems to confirm the central role played by a few directors in the Italian

system, as it is also noticed by the literature about the Italian situation ([45],[46],[54]).

Focusing on the small connected components, they are formed by directors who sit on the

boards of directors of companies (Mediaset, Mediolanum, Vianini, Cementir), belonging

to the Italian Blue Chips. Also, this leads us to think that our findings are not affected

by having included in our analysis all the companies listed on the Italian stock exchange

(let us remember that in [35] the analysis of the German case is restricted to companies

listed on the DAX and MDAX).

4.5 A new model of network dynamics

The analysis performed comparing the Italian situation to the German case highlighted

many differences. What does not emerge in the previous studies is which companies create

stable links over time and which of these links are attributable to the presence of the same

directors in multiple boards. Many companies indeed maintain the same links with others

in the entire period, but they do not maintain the same directors; this aspect could be

interesting to investigate in the Italian context, which is characterized by a pyramidal

structure in which the family groups play an important role.

In this Section we propose another approach to study the time evolution of the board

network, in order to find out which links are the most stable over time.

We build a static graph in order to capture both temporal and topological properties

of the network and we propose a new method to do it.

To start with, we describe the network at time t = 1, 2, ...,m with graphsG1, G2, ..., , Gm.

First we observe that varying the time, not only the links vary, but also the vertices of the

network. Indeed, when we will apply this model to the Italian Stock Exchange in a long

time period some firms can be delisted, whereas new firms become members.

Hence in the network some nodes may disappear, whereas others may appear. For this

reason, we consider as a set of vertices the union of all vertices appearing in the given time

interval. Therefore, for every t = 1, 2, ...,m the graph Gt will have the same number of

nodes n. When a vertex v exists at time t = i but it does not exist at time t = j it will

appear both in Gi and in graph Gj , the only difference being that in Gj it will appear as
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an isolated and fictitious vertex5 The fact of taking into account all the appearing vertices

is widely used in literature (see for instance [30],[40]), as significantly it simplifies the

pattern, even though it increases its complexity.

Let Gt = (Vt, Et) with |Vt| = n and t = 1, ...,m be the graph describing the network

at time t. Let us consider the adjacent matrices At associated to graphs Gt (t = 1, ...,m),

and define for each time interval τ = [t, t+ 1] a n−square, symmetric matrix Dτ =
[
dτij

]
such that:

dτij =


−1 atij = at+1

ij = 0

1 if atij = at+1
ij = 1

0 otherwise

The entries of the matrix Dτ quantify the persistence of the edges in a time interval,

giving the information when in a given time interval τ the edge (i, j) does not exist

(dτij = −1) or it has been subject to any variation (dτij = 0), i.e. at time t it does not exist

and at time t + 1 it exists (or vice versa), or if an existing link remains unchanged at all

(dτij = 1). We call active at time t a link (i, j) such that dτij 6= −1.

Since the number of time intervals τ is m − 1, we obtain τ = 1, ...m − 1 variation

matrices Dτ . Let us now define the link activity vij and link stability6 sij of the edge (i, j)

as:

vij =
m−1∑

τ=1,dτij 6=−1

1,

sij =

m−1∑
τ=1,dτij 6=−1

dτij .

Observe that the value vij of (i, j) counts in the whole time span the number of active

links and takes into account only the intervals in which the link (i, j) persists or it has

been subject to any change (dτij = 1 or dτij = 0): in general it quantifies the link activity

for the entry (i, j) in the overall time. On the other hand, the link stability sij considers

the number of persistent links, as it is equal to the number of time intervals in which an

edge (i, j) remains unchanged.

5Since our aim is mainly to find out the persistence of links, the existence of isolated, fictitious vertices
does not affect the validity of our study.

6In this work, the word ”stability” refers to the presence over time of network links, and it is not the
meaning assumed in dynamical system theory.
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Finally, we quantify the relative stability for each links, defining a n−square symmetric

matrix C = [cij ] (we will call it cumulative matrix) such that:

cij =


sij
m−1 if vij 6= 0

−1 otherwise

Observe that for an active link (i, j), 0 ≤ cij ≤ 1, whereas for a non-active link (i, j),

cij = −1. By the previous definition, if the link (i, j) always exists in the network, then

cij = 1, this being the maximum link stability. If the link (i, j) has been activated (at

least once) in a time interval but in the following time it has been cancelled, then cij = 0,

hence it has not acquired stability. The other values of cij , with 0 < cij < 1 indicate the

percentage of relative link stability. In the following example we illustrate our approach

to study the network dynamics.

The network stability can be further illustrated by the construction of a new network,

representing the stable links in the overall time period. In order to do this, we define a

threshold θ of stability and the graph Sθ whose adjacency matrix is:

aθij =

 1 cij ≥ θ

0 otherwise
.

The resulting graph Sθ shows the most stable links, e.g. with percentage of relative

link stability more than θ. For this reason, we will call it stability graph.

Example

Let us consider the evolution of a graph G with n = 5 for t = 11 time periods; the graph

evolves by changing its links over time. Figure 4.2 shows how G evolves in the overall

period. We observe that the link between node 1 and node 2 is active and always stable,

so that c12 = 10
10 = 100%; the link between node 2 and node 3 at first is stable, whereas

for t = 7 disappears, so that c23 = 5
10 = 50% .The link between node 4 and node 5 is

active but not stable, as it disappears and afterwards appears (c45 = 0
10 = 0%). The link

between node 1 and node 3 is not active, and therefore c13 = −1. The weighted graph

representing the no negative values of the cumulative matrix C is shown in Figure 4.3;

this graph illustrates which links are active and stable.
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Figure 4.2: Dynamics of a graph G with 5 vertices for t = 11 time periods; graph evolves by
changing its links over time.

Figure 4.3: The dynamics of the graph represented in Figure 4.2 is modeled by the cumulative
matrix C, represented by a weighted graph, weights representing the entries cij 6= −1. The
weighted graphs describes the activity of the links, stating the percentage of stability. For
instance, the link between node 1 and node 2 is always stable and active, so that c12 = 10

10 =
100%; the link between node 2 and node 3 at first initially is present, whereas for t = 7
disappears, so that c23 = 5

10 = 50% . The link between node 4 and node 5 is active but not
stable, as at first it disappears, reappearing afterwards (c45 = 0

10 = 0%).

4.6 Application to the board network

If we apply the previously described model to the board networks from 1998 up to

2011, we obtain 13 variation matrices DIt from which the cumulative matrix C is derived.

In this case, for each year, a square matrix of 454 nodes must be used, since we take into

account all the companies that, throughout 14 years, have been listed in the Italian Stock

Exchange. Thus, a certain company will hold the same position in the matrix as time

passes and no ambiguities will arise in establishing where interlocks are placed. Therefore,

assessing the time stability of an interlock between two boards is equivalent to assess

the stability of a given link. At this level of the analysis, however, we do not know yet

whether the interlock is due to the same director or more different directors who have been

subsequently appointed. Initially, we state that the threshold is θ = 100%. Obviously,
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this represents an extreme case where interlocks are always existent in time.

By inspection of Figure 4.4 it’s evident that there are 8 connected stable components.

As a result, there are strong ties among firms in the overall period. Most of them are

ties due to the ownership of family firms. Indeed, the connected component formed by

Caltagirone, Cementir, Vianini Ind., Vianini Lavori, Banca Finnat represents the Calta-

girone family; the component formed by Sogefi, Cir, Cofide, Gruppo Editoriale L’Espresso

represents the De Benedetti family; the component formed by Fiat and Exor represents

the Agnelli family; the component formed by Carraro, Autogrill, Benetton represents the

Benetton family; finally the component formed by Mediolanum, Arrnoldo Mondadori,

Mediaset represents the Berlusconi family.

The component with the most number of nodes reflects the result of the cross-

shareholding among the most historical and important Italian companies, as RCS, Pirelli

SpA, Italcementi and Mediobanca. This was essentially noticed also in the analysis of

[22], in which the authors point out the existence of a cohesive group of firms, in a central

position with respect to most centrality measures, belonging to the salotto buono7 of the

Italian companies. Moreover it becomes the main component if we decrease the threshold,

namely in Figure 4.6 we can observe that this component has incorporated the compon-

ents of Benetton family, Agnelli family, De Benedetti family, Berlusconi family. Instead

the Caltagirone family continues to remain a separate component.

It is worth wondering whether the stable links, shown in Figure 4.4 are caused by the

step-in/out of different directors or not. In order to find this out, we can use the bipartite

network which represents the relationships among directors and the boards they sit on, and

we state appointment stability. Hence, it will be possible to assess the nature of interlock

stability. On the one hand, we could observe those interlocks, whose stability derives

from the stability of director appointment/s, on the other we could find those interlocks

that are stable regardless of appointment stability. If we take the list of directors being

appointed at least once within 14 years, this amounts to 6373 directors. Among these,

the total number of directors giving rise to interlocks within a time interval of 14 years

is 3957. These are directors who simultaneously serve on different boards. Therefore, we

need to construct a bipartite network that is formed by 3957 directors and 454 companies.

7This is a typical italian expression to identify a the well-heeled elite of bankers, industrialists and
politicians that still dominate Italian economic life.

75



As it happened previously for every single year analyzed, only some vertices are active

and many vertices will be fictitious. If we apply our methodology to the bipartite network,

we obtain a cumulative matrix C ′, which means that each of its elements represents the

percentage of link stability in time, i.e. in this case the appointment stability.

From the analysis of all the above mentioned data, we can establish that the first

significant threshold, that is the one in which at least a link exists, is approximately 69%.

This means that no director has had an appointment, giving rise to an interlock, for more

than a 10 year total period.

On the contrary, in the board network the presence of stable links occurs also with a

threshold θ = 100%. This means that in such a network interlock stability higher than

69% is caused by the step-in/out of different directors, i.e. an interlock persist but the

director that causes the edge is not always the same.

Establishing a threshold θ = 65% we are able to identify the kind of links in the board

network by means of the bipartite network. In fact, the stability of a link in the board

network is due to the appointment stability if the corresponding appointment is present

in the bipartite network. In Figure 4.5 we can observe the bipartite graph obtained fixing

the threshold of 65%: on the left of the edges there are the directors and on the left the

companies in which board they sit in.

While in the board network, with the same threshold, the active vertices amount to

77 companies, only 36 companies (out of the 77) have appointment stable links and they

appear in bipartite network too.

Figure 4.6 summarizes the analysis of the stability on the board network, by including

the information extracted by the bipartite network. The information about appointment

stability is represented in the graph by red thick edges, whereas the the simple stability

is represented by black edges.

From the inspection of this graph, it is evident that in most cases the link stability

is not due by the appointment stability. Nevertheless we have to notice the presence of

stable links among the most important firms and then we can suppose that firms tend to

maintain their connections over time, despite of a remarkable turnover among directors.

In some components the stability of appointments is due to the family ownership; the

most evident are the cases of Caltagirone and De Benedetti families. Caltagirone family

controls many industrial firms; this ownership structure is reflected also in the governance:
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these firms are linked in a very cohesive connected component, where links are due to the

presence of the same directors for most years of the sample (quite similar is the analysis

of De Benedetti group).

Our analysis reinforce what we have found in the previous Section: the italian case is

characterized by a stable disconnected small structure with intense ties and every compon-

ents have a cohesive structure, often submitted to a ownership control of few important

families.
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Figure 4.4: The stability graph with θ =100%
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Figure 4.5: The bipartire graph with θ = 65%: on the left of the edges there are the directors
and on the left the companies in which board they sit in.
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Figure 4.6: Analysis of the stability on the board network with θ =65%. Links are 102; the
information about appointment stability is represented by the red thick edges (36), whereas
the simple stability is represented by the black edges (66).
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Years 1998 1999 2000 2001 2002 2003 2004

#of companies 235 255 291 301 295 262 268

# directors 1782 1913 2212 2309 2306 2106 2171

# mandates 2267 2434 2781 2899 2875 2636 2719

Aver mandates 1.27 1.27 1.26 1.26 1.25 1.25 1.25

#of isolate nodes 53 56 61 52 63 53 52

#of components 6 8 9 6 6 6 9

Company links 845 654 718 740 689 661 673

Aver. board size 9.65 9.58 9.57 9.64 9.75 10.06 10.14

Main C size 170 182 205 236 221 197 195

Network density (Main C) 0.04017 0.03873 0.03309 0.02643 0.02814 0.03382 0.03479

Company links (Main C) 577 638 692 733 682 653 658

Years 2005 2006 2007 2008 2009 2010 2011

#of companies 277 283 293 283 278 262 258

# directors 2236 2290 2403 2356 2381 2263 2227

# mandates 2836 2845 2949 2871 2866 2728 2671

Aver mandates 1.27 1.24 1.23 1.22 1.20 1.21 1.20

#of isolate nodes 49 57 66 61 68 61 64

#of components 11 8 9 8 4 5 5

Company links 701 651 639 577 536 493 470

Aver. board size 10.24 10.05 10.06 10.14 10.30 10.41 10.35

Main C size 204 210 210 207 203 191 184

Network density (Main C) 0.03299 0.02916 0.02866 0.02664 0.02590 0.02678 0.02750

Company links (Main C) 683 640 629 568 531 486 463

Table 4.1: Descriptive statistics of the interlock network. Number of isolated nodes. of
components and company links are referred to the board network. Network density is the sum
of the degrees divided by n(n-1), where n is the number of the nodes of the network.
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Table 4.2: Network structure constructed by considering only directors with an increasing
threshold of board memberships b.
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Conclusions

We have presented an overview on dynamic networks: these models are suitable to

describe the evolution of a system in different fields of applications.

In the first case of study we have implemented the model of Vitting Andersen et al. by

a large data base: the daily returns of 24 financial indices worldwide from 2000 to 2008.

After first validating known empirical properties of the network of stock exchanges (e.g.

directional price movements of stock exchanges following a large US open/close price move-

ment) we have studied non-linear price dynamics within the network of stock exchanges

in general, with a focus of propagation of avalanches of ”price-quakes’ in particular.

Two different definitions of avalanches have been proposed: both have as size distribu-

tion a power law in agreement with the hypothesis that empirical data can be described

in terms of a Self Organized Critical model.

In particular we have focused our attention on the avalanche caused by a single node,

i.e. when a large cumulative movement of the price of a single index is able to influence

the price of other indices.

The avalanches have been represented by means of graphs. The features of these graphs

provide us with additional information of financial contagion.

In general the perturbation of small avalanches of price movements across markets is

a very frequent phenomenon, on average every two days and half there is a contagion

between markets in different countries.

However larger events with a contagion propagating throughout the network of the

worlds stock exchanges are less frequent, just like earth quakes where a Gutenberg-Richter

scale defines the likelihood for a small versus large quake.

The factors that can give rise to the onset and the spread of an avalanche are: the

volatility of the markets, the temporal sequence of open/close of the stock exchanges

worldwide, the capitalization and geographical position. In order to visualize the role of
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influence between the markets is suitable to assemble them in macro geographical areas.

Our method enables us to highlight the major role played by North America markets

and the negligible role of e.g. Middle East markets. Conversely the other markets play

a bivalent role. The statistical features of the system will be analyzed through stylized

facts.

In the second case of study we have examined how interlocking directorate evolves

from 1998 to 2011, in Italy. We are interested to establish whether the governance of the

Italian companies is based on a stable structure over time; our results have revealed a

network structure stable over time characterized by a ”core”, due to the presence of few

directors with multiple assignments. Unlike the German case, this core is stable but not

connected.

This result is consistent with most previous findings in literature.

Finally we have proposed an alternative approach based on temporal networks in order

to investigate the nature of the links which are stable over time.

The analysis is performed by quantifying the variation of links in a time period, by

means of a unique cumulative network, where the nodes are the companies and the ex-

istence of an edge is related with the persistence over time of an interlock between two

companies.

A weighted graph represents the activity of the links, stating the percentage of stability.

Our findings reveal that the Italian case is characterized by a small structure, with ties

that are stable over time.

These persistent links reflect on the one hand the ownership control of few important

families, on the other hand they are due to cross-shareholdings between companies, that

tend to maintain their connections despite a turnover effect.
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