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Summary: The present work aims to obtain the value of minimum sample size 
required by a good approximation by the normal curve for the sample mean 
difference. Particular care is given to what happens in the tails of the curves, with 
the aim of deriving confidence intervals for Gini�’s mean difference. This goal is 
obtained by empirical methods and the presented results have an explorative nature. 
Simulation data have been obtained sampling from different distributions, 
considering symmetry versus asymmetry and the existence of the moments as main 
aspects in the underlying distribution. These remarks lead to the choice of the 
normal, the rectangular, the exponential and the Pareto distributions. All the 
obtained results indicate that the shape of the distribution from which the samples 
are generated is critically related to the minimum sample sizes required for a good 
approximation of the tails of the sample mean difference to the normal curve. 
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1. Introduction 

The estimator n
�ˆ  of Gini�’s mean difference , in a remarkable work due to 

Hoeffding (1948), was classified as a U-statistics. The whole class of U-
statistics owns some optimal properties (Halmos, 1946): among them, they 
are unbiased estimators for the related functional on the population and they 
are asymptotically normal; moreover, their variance is a function of the 
sample size n and of some main population characteristics. A systematic 
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presentation of the theory of U-statistics can be found in Koroljuk and 
Borovskich (1994), although in this work only their central limit theorem is 
required. 

An unbiased estimator )( n
�ˆarV�ˆ  for Var( n

�ˆ ) was proposed by Cowell 
(1989) and recently Zenga et al. (2004) have derived it through a different 
methodology. This result allows to make inference about Gini�’s mean 
difference : for instance, to derive confidence intervals, the convergence of 

n
�ˆ  to the normal distribution has to be investigated. In general, the sample 
size n that assures a good approximation will depend on the population 
distribution from which the sample is drawn. 

The aim of this work is to explore, by simulation methods, the minimum 
sample sizes that guarantee a good approximation of the distribution of the 
statistic n

�ˆ  by the normal distribution, considering different underlying 
distributions. Symmetric and asymmetric distributions will be considered, 
giving particular care in choosing and varying their parameters, mainly when 
they are related to the existence of moments. 

The present paper is organized as follows. Section 2 is devoted to some 
needed definitions and notations. The methodology is presented and 
discussed in section 3. The details concerning the simulation experiments are 
given, along with the discussion of the results, within section 4. Finally, 
section 5 concludes and points out some possible developments.  

2. Notations and definitions 

Let X be a continuous random variable (c.r.v.) with probability density 
function f(x), for x . Gini�’s mean difference  is defined by: 

 

 
.dydx)y(f)x(fyx  (1) 

Let  and 2 denote, respectively, the mean and the variance of the c.r.v. X. 
In this paper it is assumed that 2 is finite: this assures the asymptotic 
convergence to normality of �ˆ . Let (X1,..,Xi ,..,Xn) denote a random sample 
(s.w.r.) of size n (n > 3) from the c.r.v. X, where the r.v. Xi (i = 1,2,..,n) are 
i.i.d., so that the sample mean difference (hereafter, s.m.d.) without 
repetition n

�ˆ  is given by: 
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The expected value of n
�ˆ is: 
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 .,�ˆE n everyfor  (3) 

The general formula for the variance of n
�ˆ  has been derived first by Nair 

(1936), then, in a simpler form, by Lomnicki (1952) (see also Michetti and 
Dall�’Aglio, 1957), as: 
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where the functional F  is given by: 

 .dzdydx)z(f)y(f)x(fzxyxF  (5) 

The sample mean difference without repetition is hence a mean squared 
error consistent estimator for .  

3. Measuring the convergence of n
�ˆ  to the normal distribution  

In order to evaluate the convergence to normality of n
�ˆ  a X2 test may be 

used, or, more generally, a goodness of fit test. Actually, in order to derive 
confidence intervals for , we are not interested in measuring how n

�ˆ  
behaves in all the real line, but rather how its tails behave. To measure the 
departure from normality of the distribution of the sample mean difference, 
the nominal probability (1- ) assigned to the asymptotic interval:  

)�ˆ(Varz�ˆ)�ˆ(VarzPlim nnnn 21211  (6) 

has to be compared1 with the probability 
n

p �ˆ obtained for fixed and finite n: 

)�ˆ(Varz�ˆ)�ˆ(VarzPp nnn�ˆ
n 2121  (7) 

It is worth noting that the probability 
n

�ˆp  defined in (7) depends on the 

nominal risk , the sample size n and the underlying distribution function 
F(x) from which the samples are drawn: 

n
�ˆp =

n
�ˆp ( , n, F(x)). If the exact 

distribution of the sample mean difference n
�ˆ  was known for some F(x),  the 

probability 
n

�ˆp  could be evaluated; unfortunately this has been done only 

                                                 
1 As usual, 21z is the (1- /2)-quantile of the standard normal variable. 
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for a very few distributions (see Ali 1969, Crocetta and Loperfido 2004), 
moreover its computational complexity grows as n increases.  

An estimation of the unknown probability 
n

�ˆp can be obtained by 

simulations. A high number B of pseudo samples of size n are drawn from a 
given continuous distribution F(x); from each sample a simulated estimation, 
say i, of the sample mean difference n

�ˆ  is provided, so that B values i  (i = 
1,...,B) are obtained. The set of these values can be considered as an 
empirical variable, say sim�ˆ . The ratio between the number of values of i 
falling in the (1- )-confidence interval centred on  defined in (7) and the 
total number B of the simulated estimations i is a sample relative frequency: 

.
B

B,...,i;�ˆVarz#
p�ˆ

nii

�ˆ
n

121

 (8) 

Being
n

�ˆp�ˆ a relative frequency, its expected value and variance are given by: 

nn
�ˆ�ˆ p)p�ˆ(E     and     

nnn
�ˆ�ˆ�ˆ pp

B
)p�ˆ(Var 11 . (9) 

The values obtained by 
n

�ˆp�ˆ , for large values of B, are good estimations of 

the unknown probability 
n

�ˆp . 

In order to appreciate and discuss the simulated results, the same approach 
is carried out for confidence intervals for E(X) = , so giving the possibility 
of a useful comparison with an analogous - but well known - situation.  The 
sample relative frequencies, in this case, are given by: 

B

B,...,i;XVarzxx#
p�ˆ

nii

X n

121
 (10) 

where ix  is the simulated value of the sample mean n

j jn XnX
1

1 , 

obtained for each of the B samples. For high values of B the  values of 
nXp�ˆ  

are good approximations of the unknown probabilities
nXp : 

,)X(VarzX)X(VarzPp nnnX n 2121  (11) 

and  1
nXn

plim .        

In the following section, a series of simulation data will be presented, for 
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different values of and the sample size n, and for different distributions of 
the continuous random variable X. 

4. Minimum sample sizes assuring a good approximation  

Four different continuous distributions, widely employed in modelling real 
data, will be considered throughout this section: the Normal, the 
Rectangular, the Exponential and the Pareto distributions. By these fairly 
simple models we can anyway explore and compare symmetric and 
asymmetric cases, and the influence of the existence of the moments (related 
to tails heaviness) in the underlying distribution.  

The simulations are obtained by a software program written in C++, using 
pseudorandom numbers generated by the IMSL statistical library. 

For each continuous population, B = 10,000 samples of size n were drawn, 
so that each sample provides a simulated estimation of the sample mean 
difference n

�ˆ , varying n from n = 30 up to n = 960, doubling each time the 
sample size. The confidence level is initially fixed at 1- = 0.99, 
successively a range of values for  is considered. 

For each group of B = 10,000 samples, the following synthetic values were 
evaluated: 

- the relative frequencies 
n

�ˆp�ˆ  and 
nXp�ˆ ; 

- the simulated quantiles sim�ˆ
2 and sim�ˆ

21  derived from the pseudo-

generated distribution of the sample mean difference sim�ˆ , to be 
compared with their asymptotic values, respectively given by: 

      n
�ˆVarz�ˆ

212      and     n
�ˆVarz�ˆ

2121 ; 

- the simulated quantiles simX 2 and simX 21  to be compared with their 
asymptotic values, respectively given by: 

       nXVarzX 212     and    n
sim XVarzX 2121 ; 

- the mean value M1( sim�ˆ ), to be compared with ;  
- the median Me( sim�ˆ ) of the 10,000 estimations; 
- the standard deviation ( sim�ˆ ) of the 10,000 estimations; 
- the standardized third moment of sim�ˆ as an asymmetry index; 
- the standardized fourth moment of sim�ˆ as a kurtosis index. 
 

All simulation results, for each chosen continuous population, and for each 
given sample size n, are summarized in a Table. In each row of the Table, 
with reference to a specific value of the risk ,some synthetic values for the 
group of B samples are provided. For each group of B samples a graphical 
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representation of the simulated distribution sim�ˆ is also reported. 
As said before, the aim of simulations is to investigate the minimum 

sampling sizes for which 
n

�ˆp�ˆ is a good estimation for 
n

�ˆp , for applications. 

The approximation will be considered good if, for = 0.05, the simulated 
risk is in the range 0.04 �– 0.06. More generally, a percent absolute deviation 
less than 20% between the nominal risk and the simulated one will be 
considered a good approximation (Vesserau 1957; Zenga, 1974). 

4.1 Normal distribution 

Let  X  be the normal c.r.v. with probability density function: 

 
.,fore)x(f

x

0
2

1
2

2
1

  

The values of the parameters can be fixed by  = 0, 2 25. With this 
choice2, the value of Gini�’s mean difference is  = 5.64190.  

 
 

Table 1.  Simulation data for the evaluation of the tails of the distribution of the 
s..m.d. 

n
�ˆ , sampling  from  N( =0.0; =5.0) (n=30, B=10,000 samples) 

sim

/

�ˆ
2
 sim

/

�ˆ
21
 

2/

�ˆ  
21 /

�ˆ  
n

p �ˆ�ˆ  1-  Acc. range 
sim

/
X

2
 sim

/
X

21 2/
X

21 /
X  

nXp�ˆ  

3.847 7.697 3.705 7.579 0.990 0.99 0.988-0.992 -2.279 2.365 -2.351 2.351 0.991 
4.049 7.432 3.956 7.328 0.974 0.975 0.970-0.980 -2.027 2.078 -2.046 2.046 0.974 
4.229 7.198 4.168 7.116 0.950 0.95 0.940-0.960 -1.792 1.830 -1.789 1.789 0.947 
4.357 7.026 4.303 6.981 0.925 0.925 0.910-0.940 -1.617 1.665 -1.625 1.625 0.920 
4.435 6.926 4.405 6.879 0.900 0.90 0.880-0.920 -1.500 1.549 -1.502 1.502 0.896 
4.579 6.753 4.559 6.725 0.847 0.85 0.820-0.880 -1.331 1.350 -1.314 1.314 0.843 

 
Table 1 shows the simulated data obtained by generating B = 10,000 

samples of size n = 30. In each row a different value of the risk  is 
considered. The values of the simulated quantiles sim�ˆ

2
and sim�ˆ

21
, in the first 

and second column, are very close to their asymptotic values 2/
�ˆ  and  

21
�ˆ

, respectively given in the third and fourth column. All simulated 
probabilities 

n
�ˆp�ˆ , evaluated by (8) with reference to the interval 

                                                 
2 Actually, as the analytic expression of the third and fourth standardized moment in 
the normal distribution -as well as in the rectangular and in the exponential-  does 
not depend on the parameters, any choice for their values would yield the same 
results on 

n
�ˆp�ˆ and on .p�ˆ

nX
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n
�ˆVarz 21 , are in the range of acceptable values indicated in the 

central column (in this and in the following tables, acceptable values are 
highlighted). This means that n = 30 already assures a good behaviour of the 
tails of the distribution of n

�ˆ . Their performance is almost as good as that of 
the tails of nX , whose distribution is known to be normal. The probabilities 

nXp�ˆ were indeed expected to be in the acceptable range, as the last column 

of Table 1 shows. All simulation data for n
�ˆ , with n = 30, are shown in 

Figure 1. 
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Figure 1. Simulated distribution of the s.m.d. 

n
�ˆ  (by B=10,000 samples, n=30, 

drawn from N( = 0.0; = 5.0) 
 

Table 2 shows some moments and indices of the simulated distribution of 
n

�ˆ  and offers a comparison with the same quantities obtained on its 
asymptotic distribution: the mean value M1( sim�ˆ ), to be compared with  and 
with the median Me( sim�ˆ ) of the 10,000 estimations; the standard deviation 

( sim�ˆ ), the standardized third moment 3( sim�ˆ ) as an asymmetry index and 
the standardized fourth moment 2( sim�ˆ ) as a kurtosis index.  
 

Table 2. Some indices of the asymptotic distribution N( = ; = nVar �ˆ ) of the 

s.m.d. n
�ˆ , compared with the simulated values obtained by B =10,000 samples from 

N( = 0.0; = 5.0), n = 30 

 Simulated values Asymptotic values 
M1( sim�ˆ ) 5.65428 E( n

�ˆ ) = 5.64190 

Me( sim�ˆ ) 5.63574 5.64190 

3( sim�ˆ ) 0.14260 0.0 

2( sim�ˆ ) 2.98157 3.0 

( sim�ˆ ) 0.75651 nVar �ˆ  = 0.75204 
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Actually, the approximation of n
�ˆ  to the normal is good enough for all 

considered sample sizes. Indeed, the main simulation results for higher 
samples sizes n = 60, 120, 240, 480 and 960 are shown in Table 3. 

  
Table 3.  Simulation data for the evaluation of the tails of the distribution of the 
s.m.d. n

�ˆ , sampling from N(  =0.0; =5.0) (by B=10,000 samples) 

n = 60  n = 120 n = 240 n = 480 n = 960 

1-  Acc. range  
n

p �ˆ�ˆ  
nXp�ˆ   

n
p �ˆ�ˆ

nXp�ˆ  
n

p �ˆ�ˆ
nXp�ˆ  

n
p �ˆ�ˆ

nXp�ˆ  
n

p �ˆ�ˆ  
nXp�ˆ  

0.99 0.988-0.992  0.991 0.991  0.992 0.988  0.990 0.991  0.991 0.990  0.991 0.988 
0.975 0.970-0.980  0.976 0.976  0.975 0.975  0.977 0.975  0.975 0.977  0.976 0.974 
0.95 0.940-0.960  0.951 0.951  0.949 0.948  0.954 0.950  0.952 0.951  0.949 0.950 
0.925 0.910-0.940  0.929 0.927  0.922 0.925 0.927 0.927  0.928 0.926  0.924 0.925 
0.90 0.880-0.920  0.904 0.902  0.899 0.900  0.902 0.903  0.904 0.902  0.901 0.900 
0.85 0.820-0.880  0.856 0.854  0.852 0.849  0.851 0.852  0.852 0.850  0.847 0.848 

 

 
All the simulated data have shown a very good approximation of the 

probability associated with the tails of the distribution of the sample mean 
difference, even from the minimum sample size.  The simulated distributions 
can also be synthesized by the indices presented in Table 4, in which the 
median of the simulated values Me( sim�ˆ ) is increasing as n increases, 
approaching their mean M1( sim�ˆ ). The decreasing values of the third 
standardized simulated moment 3( sim�ˆ ), as n increases, denote a slight and 
decreasing asymmetry. A very low degree of platykurtosis is roughly 
assessed  by the standardized fourth moment 2( sim�ˆ ), for all values of the 
sample size n. The specific expression for the variance of n

�ˆ , sampling from 
the normal distribution, can be found in Nair (1936) (see also Kendall et al. 
(1994), Zenga et al. (2004)). 

 
Table 4.  Some indices of the asymptotic distribution of the s.m.d. n

�ˆ , compared 

with the simulated values obtained by B=10,000 s.w.r. from N( =0.0; =5.0), and 
the theoretical values for nVar �ˆ  (n=30,...,960) 

Simul.values n = 30 n = 60 n = 120 n = 240 n = 480 n = 960  Asympt.values 

M1( sim�ˆ ) 5.65428 5.63921 5.63672 5.64677 5.64245 5.64265 E( n
�ˆ )=5.64190 

Me( sim�ˆ ) 5.63574 5.63816 5.63384 5.64157 5.64157 5.64185 5.64190 

3( sim�ˆ ) 0.14260 0.06974 0.08224 0.05474 0.01770 0.01654 0.0 

2( sim�ˆ ) 2.98157 2.95252 2.96829 2.94844 2.96384 2.94698 3.0 

( sim�ˆ ) 0.75651 0.52196 0.36934 0.25969 0.18342 0.13075  

 nVar �ˆ  0.75204 0.52623 0.37018 0.26108 0.18438 0.13029  
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The distribution of sim�ˆ for all chosen values of the sample size n > 30 is 
shown in Figure 2. 
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sample size n = 120 
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sample size n = 240 
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sample size n = 480 
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    sample size n = 960 

Figure 2. Simulated distribution of the s.m.d. �ˆ (by 10,000 samples, drawn from the 
Normal(  =0;  =5)) 
  

 
While n increases, the range of values assumed by sim�ˆ  reduces and 

concentrates around  = 5.641896. The simulated distribution is 
progressively more symmetric and bell-shaped as n increases, and a slightly 
unwieldy behaviour on the tails is gradually smoothing. In any case, it is not 
far from symmetry even for the lowest value of the sample size (n = 30). 

4.2 Rectangular distribution 

Let  X  be the c.r.v. with probability density function: 

 

ab
)x(f

1     for    a  x   b,  (b > a).  
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Let us fix the parameters a and b of this distribution by a = 0 and b = 1, 
hence the main characteristics of the distribution are given by ,.50  

2 0.083 and = 0.333. The simulated data obtained for this distribution, 
for n = 30, are shown in Table 5. 

 
Table 5. Simulation data for the evaluation of the tails of the distribution of the 
s.m.d. n

�ˆ , sampling from the Rectangular (a=0, b=1) (n=30, B=10,000 samples) 

sim

/

�ˆ
2
 sim

/

�ˆ
21
 

2/

�ˆ  
21 /

�ˆ  
n

p �ˆ�ˆ  1-  Acc. range 
sim

/
X

2
 sim

/
X

21 2/
X

21 /
X  

nXp�ˆ  

0.254 0.403 0.259 0.408 0.991 0.99 0.988-0.992 0.371 0.634 0.364 0.636 0.992 
0.265 0.394 0.268 0.398 0.975 0.975 0.970-0.980 0.386 0.618 0.382 0.618 0.978 
0.274 0.388 0.276 0.390 0.949 0.95 0.940-0.960 0.402 0.602 0.397 0.603 0.957 
0.279 0.384 0.282 0.385 0.923 0.925 0.910-0.940 0.409 0.593 0.406 0.594 0.931 
0.284 0.380 0.286 0.381 0.898 0.90 0.880-0.920 0.416 0.587 0.413 0.587 0.905 
0.291 0.375 0.292 0.375 0.851 0.85 0.820-0.880 0.425 0.576 0.424 0.576 0.854 

 

The values of the simulated quantiles sim
2

�ˆ and sim�ˆ
21  are slightly lower 

than their asymptotic values 2
�ˆ  and  21

�ˆ  (columns 1-4 of Table 5). The 

simulated probabilities
n

p �ˆ�ˆ are steadily in the range of acceptable values 

indicated in the central column (all values are hence highlighted). This 
means that n = 30 already assures a good behaviour of the tails of the 
distribution of n

�ˆ . Their performance is similar to that of the tails of nX  
measured by 

nXp�ˆ , referring to the sample mean, shown and highlighted 

(acceptable values) in last column of Table 5. 
The simulated distribution of n

�ˆ , for n = 30, is represented in Figure 3.  
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Figure 3. Simulated distribution of the s.m.d. n

�ˆ  (by B=10,000 s.w.r., n=30), drawn 

from the Rectangular distribution (a=0, b=1) 
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Table 6 shows all the results for different values of the sample size n:  
 

Table 6.  Simulation data for the evaluation of the tails of the distr. of the s.m.d. 
n

�ˆ sampling from the Rectangular distribution (a = 0, b =1) (by B=10,000 samples) 

n = 60 n = 120 n = 240 n = 480  n = 960 

1-  Acc. range  
n

p �ˆ�ˆ  
nXp�ˆ  

n
p �ˆ�ˆ

nXp�ˆ  
n

p �ˆ�ˆ
nXp�ˆ  

n
p �ˆ�ˆ

nXp�ˆ   
n

p �ˆ�ˆ  
nXp�ˆ  

0.99 0.988-0.992  0.991 0.991  0.992 0.990  0.991 0.990  0.990 0.990  0.989 0.990 
0.975 0.970-0.980  0.976 0.977  0.976 0.975  0.976 0.973  0.976 0.975  0.974 0.974 
0.95 0.940-0.960  0.952 0.955  0.953 0.951  0.949 0.948  0.954 0.950  0.950 0.951 
0.925 0.910-0.940  0.927 0.930  0.929 0.924  0.924 0.922  0.928 0.925  0.922 0.927 
0.90 0.880-0.920  0.903 0.903  0.905 0.902  0.897 0.898  0.901 0.897  0.898 0.902 
0.85 0.820-0.880  0.851 0.853  0.856 0.851  0.849 0.849  0.849 0.850  0.848 0.850 

 

All the simulated probabilities perform well (highlighted values), for each 
of the chosen values of the risk , and for each value of the sample size n. 
The sampling distribution of n

�ˆ  might be reasonably approximated by a 
normal curve already for n = 30, when the sample is drawn from the 
Rectangular distribution. 

A synthetic overview of some indices of the simulated distribution is 
provided by Table 7, jointly with their theoretical or asymptotic values for 
meaningful comparisons. The sign of the third standardized simulated 
moment 3( sim�ˆ ) assesses some slight negative asymmetry, and it becomes 
even slighter as the sample size increases. In any case, the degree of 
asymmetry is so weak that it does not affect the coverage probabilities of 
Table 6. The kurtosis index 2( sim�ˆ ) roughly indicates normal peakedness and 
tails. The specific expression for the standard error of n

�ˆ  in the case of 
sampling from the Rectangular distribution can be found in Nair (1936) (it is 
also recalled in Kendall et al. (1994) or Zenga et al. (2004)). 

 

Table 7.  Values of some indices of the asymptotic distribution of the s.m.d. n
�ˆ , 

compared with the simulated values obtained by B=10,000 s.w.r. from the 
Rectangular distribution (a=0, b=1) and the theoretical values of nVar �ˆ   

Simul. values n = 30 n = 60 n = 120 n = 240 n = 480 n = 960 Asympt. values 

M1( sim�ˆ ) 0.33411 0.33334 0.33334 0.33324 0.33340 0.33330 E( n
�ˆ )=0.33333 

Me( sim�ˆ ) 0.33500 0.33400 0.33362 0.33331 0.33342 0.33333 0.33333 

3( sim�ˆ ) -0.23364 -0.16642 -0.13204 -0.06169 -0.03328 -0.03578 0.0 

2( sim�ˆ ) 3.05468 2.99126 2.94896 3.00188 2.92557 3.07993 3.0 
( sim�ˆ ) 0.02906 0.01989 0.01367 0.00967 0.00684 0.00486  

nVar �ˆ  0.02903 0.01988 0.01382 0.00970 0.00686 0.00480  
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Figure 4 gives a graphical representations of the simulated distributions, 
for sample sizes n = 60, 120, 240, 480 and 960. 
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Figure 4. Simulated distribution of the s.m.d. n
�ˆ  (by 10,000 samples, drawn from 

the Rectangular (a=0, b=1)). 
 
 

4.3 Exponential distribution 

Let X  be the c.r.v. with probability density function:  

 
xe)x(f     for   x  0,   where  > 0.  

For this distribution, choosing  = 0.2, it holds that  = 5, 2 25 and  
 = 5. Table 8 reports the simulated data obtained for this distribution. 
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Table 8.  Simulation data for the evaluation of the tails of the distribution of the 
s.m.d. n

�ˆ  sampling from the Exponential with  = 0.2 (n=30, B=10,000 samples) 

sim

/

�ˆ
2
 sim

/

�ˆ
21
 

2/

�ˆ  
21 /

�ˆ  
n

p �ˆ�ˆ  1-  Acc. range 
sim

/
X

2
 sim

/
X

21 2/
X

21 /
X  

nXp�ˆ  

2.720 8.159 2.262 7.739 0.988 0.99 0.988-0.992 2.975 7.705 2.649 7.351 0.988 
2.965 7.720 2.617 7.383 0.972 0.975 0.970-0.980 3.179 7.327 2.954 7.046 0.974 
3.180 7.381 2.916 7.084 0.952 0.95 0.940-0.960 3.392 6.967 3.211 6.789 0.948 
3.305 7.083 3.107 6.893 0.931 0.925 0.910-0.940 3.518 6.777 3.375 6.625 0.923 
3.418 6.883 3.251 6.749 0.907 0.90 0.880-0.920 3.605 6.648 3.498 6.502 0.899 
3.588 6.632 3.470 6.530 0.859 0.85 0.820-0.880 3.748 6.416 3.686 6.314 0.846 

 

The values of the simulated quantiles sim�ˆ
2 and sim�ˆ

21 , in the first and 

second column, are not far from their asymptotic values 2
�ˆ  and  21

�ˆ , 
respectively given in the third and fourth column. The simulated 
probabilities 

n
�ˆp�ˆ , evaluated by (8) with reference to the interval 

n
�ˆVarz 21 , are all in the range of acceptable values indicated in the 

central column (good values are highlighted). This means that n = 30 already 
assures a good behaviour of the tails of the distribution of n

�ˆ . Their 
performance is almost as good as that of the tails of nX : the behaviour of 

nXp�ˆ , referring to the sample mean, is in the acceptable range, for > 0.01. 

A simulated distribution of n
�ˆ  for n = 30 is graphically represented in 

Figure 5.  
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Figure 5. Simulated distribution of the s.m.d. n

�ˆ  (by B=10,000 samples, n=30, 

drawn from the Exponential distribution  with  = 0.2) 
 

As before, simulation data for different values of the sample size n were 
obtained. They are shown in detail in Table 9.  
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Table 9.  Simulation data for the evaluation of the tails of the distribution of the 
s.m.d. n

�ˆ , sampling  from the Exponential distr. with  = 0.2 (by B=10,000 samples) 

n = 60  n = 120 n = 240 n = 480 n = 960 

1-  Acc. range
 

n
p �ˆ�ˆ  

nXp�ˆ   
n

p �ˆ�ˆ
nXp�ˆ  

n
p �ˆ�ˆ

nXp�ˆ   
n

p �ˆ�ˆ
nXp�ˆ  

n
p �ˆ�ˆ  

nXp�ˆ  

0.99 0.988-0.992  0.988 0.989  0.987 0.988  0.990 0.990  0.990 0.989  0.990 0.990 
0.975 0.970-0.980  0.975 0.978  0.973 0.974  0.973 0.976  0.976 0.973  0.976 0.977 
0.95 0.940-0.960  0.952 0.955  0.951 0.949  0.946 0.951  0.951 0.948  0.953 0.951 
0.925 0.910-0.940  0.928 0.928  0.926 0.921  0.923 0.925  0.926 0.925  0.927 0.926 
0.90 0.880-0.920  0.905 0.903  0.902 0.896  0.899 0.899  0.899 0.901  0.901 0.901 
0.85 0.820-0.880  0.856 0.854  0.851 0.845  0.852 0.8482  0.853 0.847  0.851 0.852 

 

All simulated probabilities perform well, for each of the chosen values of 
the risk , whenever n  30. 

Table 10 gives, for each value of the sample size n, a synthetic view of the 
some characteristics of the simulated values sim�ˆ : the mean, the median, the 
standard deviation, the standardized third and fourth moments. The standard 
error of n

�ˆ  can be evaluated from Nair (1936) (see also Kendall et al. (1994) 
or Zenga et al. (2004)). 

 

Table 10.  Values of some indices of the asymptotic distribution of the s.m.d. n
�ˆ , 

compared with the simulated values obtained by B = 10,000 s.w.r. from the 
Exponential distribution with  = 0.2, and the theoretical values for nVar �ˆ   

Simul. values n = 30 n = 60 n = 120 n = 240 n = 480 n = 960 Asympt. values 

M1( sim�ˆ ) 5.01117 4.99431 4.99754 4.99839 5.00434 5.00127 E( n
�ˆ ) = 5.0 

Me( sim�ˆ ) 4.92976 4.95351 4.97316 4.98802 4.99710 4.99805 5.0 
3( sim�ˆ ) 0.46358 0.36723 0.26683 0.16338 0.13911 0.09340 0.0 
2( sim�ˆ ) 3.30478 3.17737 3.15296 3.03846 2.91580 2.98820 3.0 
( sim�ˆ ) 1.06718 0.75048 0.53430 0.37523 0.26399 0.18635  

nVar �ˆ  1.06314 0.74851 0.52815 0.37307 0.26366 0.18639  

 

The observed difference between the mean and the median of sim�ˆ denotes 
the asymmetry of the distribution of n

�ˆ . However, this asymmetry becomes 
slighter as the sample size increases, as the decreasing values of the third 
moment 3( sim�ˆ ) show. The shape indices of the distribution of sim�ˆ reveal 
some minor platykurtic behaviour for lower values of n, while  sim�ˆ  is 
slightly mesokurtic whenever n > 240.  These remarks are confirmed by the 
graphical representations of the simulated distributions, for different values 
of the sample size n, shown in Figure 6. 
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sample size n = 960 

Figure 6. Simulated distribution of the s.m.d. n
�ˆ  (by 10,000 samples, drawn from 

the Exponential,  = 0.2) 
 

4.4 Pareto distribution (first case: with parameters x0=1, = 3) 

Let  X  be the c.r.v. with probability density function: 

 
)(xx)x(f 1

0     for  x  x0 , where  x0 > 0 and  > 0.  

As the third and fourth standardized moment depends on , we have to 
consider the entire range of values  > 2 (in order to assume the existence of 
Var(X)). Actually, even if a broad set of different simulations were done 
incrementing , only two cases are presented in this work because they 
depict clearly what happens on the distribution of n

�ˆ .  
For this first case, let the value of the parameters be given by x0 = 1 and  
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  = 3, so that X has finite moments of order r only for r < 3. With this 
choice of parameters, the main characteristics of X are:   = 1.5, 2 0.75 
and   = 0.6. 

 
The aim, here, is to observe the behaviour of n

�ˆ when the sample is drawn 
from an asymmetric continuous variable that does not possess all finite 
moments. In other words, our purpose here �–and in the following section�– is 
to observe how the heaviness of the tails, expressed by )1(x , influences 
the convergence of the sample mean difference. 

Table 11 summarizes the simulation results for a sample size n = 30. 
 

Table 11.  Simulation data for the evaluation of the tails of the distribution of the 
s.m.d. n

�ˆ , sampling from the Pareto (x0 = 1,  = 3)  (n=30, B=10,000 samples) 

sim

/

�ˆ
2
 sim

/

�ˆ
21
 

2/

�ˆ  
21 /

�ˆ  
n

p �ˆ�ˆ  1-  Acc. range 
sim

/
X

2
 sim

/
X

21 2/
X

21 /
X  

nXp�ˆ  

0.241 1.723 -0.078 1.278 0.981 0.99 0.988-0.992 1.244 2.138 1.093 1.907 0.983 
0.263 1.415 0.010 1.190 0.973 0.975 0.970-0.980 1.266 1.949 1.146 1.854 0.975 
0.288 1.216 0.084 1.116 0.966 0.95 0.940-0.960 1.285 1.855 1.190 1.810 0.965 
0.305 1.093 0.131 1.069 0.959 0.925 0.910-0.940 1.296 1.800 1.218 1.782 0.956 
0.319 1.026 0.167 1.033 0.951 0.90 0.880-0.920 1.307 1.764 1.240 1.760 0.944 
0.340 0.942 0.221 0.979 0.935 0.85 0.820-0.880 1.325 1.716 1.272 1.728 0.915 

 

The values of the simulated quantiles sim�ˆ
2 and sim�ˆ

21  are considerably 

higher than their asymptotic values 2/
�ˆ  and  21

�ˆ  (respectively in 

columns 1-2 and 3-4 of Table 11). The simulated probabilities 
n

�ˆp�ˆ  are 

outside the range of acceptable values indicated in the central column 
(except for the case  of = 0.025, for which the good value is highlighted). 
More specifically, 

n
�ˆp�ˆ  is greater than the right threshold of acceptable 

ranges for  0.025, and it is lower than the left threshold for  = 0.01). 
This suggests a high asymmetry in the distribution of n

�ˆ , so that the tails of 
the distribution of n

�ˆ  do not approximately behave as the tails of the normal 
distribution. The results observed for 

n
�ˆp�ˆ  are confirmed also by 

nXp�ˆ , 

indicating an analogous behaviour for the tails of nX . 
 
The simulated distribution of n

�ˆ  for n = 30 is represented in Figure 7.  
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Figure 7. Simulated distribution of the s.m.d. n
�ˆ  (by 10,000 samples, n=30, drawn 

from the Pareto distribution with x0 = 1,   = 3) 
 

The range of values for sim�ˆ is really wide: from a minimum value of 
0.18221 to a maximum of 6.92917. The long right tail is confirmed also by 
the other sample sizes, shown in Figure 8 below, even if this behaviour is 
expected to decrease as the sample size n increases. 

 
As before, simulation data for different values of the sample size n were 

obtained. They are shown in detail in Table 12. 
 

Table 12.  Simulation data for the evaluation of the tails of the distribution of the 
s.m.d. n

�ˆ  sampling from the Pareto ( x0 = 1,   = 3) (by B = 10,000 samples) 

n = 60 n = 120 n = 240 n = 480  N = 960 

1-  Acc. range  
n

p �ˆ�ˆ  
nXp�ˆ  

n
p �ˆ�ˆ

nXp�ˆ  
n

p �ˆ�ˆ
nXp�ˆ  

n
p �ˆ�ˆ

nXp�ˆ   
n

p �ˆ�ˆ  
nXp�ˆ  

0.99 0.988-0.992  0.982 0.984  0.982 0.983  0.984 0.986  0.987 0.988  0.988 0.988 
0.975 0.970-0.980  0.974 0.976  0.973 0.975  0.976 0.977  0.976 0.977  0.977 0.977 
0.95 0.940-0.960  0.967 0.964  0.963 0.956  0.964 0.962  0.959 0.958  0.958 0.955 
0.925 0.910-0.940  0.957 0.952  0.950 0.941  0.948 0.945  0.942 0.936  0.937 0.934 
0.90 0.880-0.920  0.949 0.939  0.935 0.925  0.933 0.922  0.924 0.914  0.917 0.911 
0.85 0.820-0.880  0.925 0.900  0.902 0.885  0.895 0.880  0.886 0.871  0.873 0.865 

 

The simulated probabilities are often out from the accepted ranges 
determined by the values of , but the situation is somewhat better for 

nXp�ˆ  

than for .p�ˆ
n

�ˆ Both cases show some slight improvements as the sample size 

n increases. 
A summary of some moments and indices of the simulated distribution is 

reported in Table 13, providing also their theoretical or asymptotic values for 
meaningful comparisons: 
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Table 13.  Values of some indices of the asymptotic distribution of the s.m.d. n
�ˆ , 

compared with the simulated values obtained by B=10,000 s.w.r. from the Pareto 
distribution (x0=1,  =3) and the theoretical values of nVar �ˆ   

Simul. 
l

n = 30 n = 60 n = 120 n = 240 n = 480 n = 960 Asympt.values 

M1( sim�ˆ ) 0.59570 0.59816 0.60031 0.59929 0.60006 0.59925 E( n
�ˆ ) =0.6 

Me( sim�ˆ ) 0.54532 0.56664 0.58115 0.58846 0.59355 0.59575 0.6 

( sim�ˆ ) 0.26512 0.18952 0.13269 0.09111 0.06406 0.04591  

nVar �ˆ  0.26340 0.18609 0.13153 0.09298 0.06574 0.04649  
 

 

Because of the choice of the parameters for the underlying Pareto 
distribution, the third and the fourth simulated moments of n

�ˆ  do not appear 
in Table 13. Figure 8 shows that the simulated distributions sim�ˆ , actually, 
are still simultaneously peaked and have a heavy right tail, also for higher 
sample sizes n = 60, 120, 240, 480 and 960. These characteristics weaken for 
increasing values of the sample size. It is interesting to observe also how the 
range of values of sim�ˆ shrinks as n increases.  
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0

0.05

0.1

0.15

0.2

0.35

0.65

0.95

1.25

1.55

1.85

2.15

2.45

2.75

3.05

  
n = 120 ( sim�ˆ range: 0.307-3.358) 

0

0.02

0.04
0.06

0.08

0.1

0.12

0.36

0.5

0.64

0.78

0.92

1.06

1.2

1.34

1.48

1.62

1.76
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n = 480 ( sim�ˆ range: 0.423-1.082) 

Figure 8. Simulated distribution of the s.m.d. n
�ˆ (by 10,000 samples, drawn from 

the Pareto (x0=1, =3)) 
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n = 960   ( sim�ˆ range:  0.471-1.081) 

Figure 8. (continuation) Simulated distribution of the s.m.d. n
�ˆ  (by 10,000 

samples, drawn from the Pareto (x0=1, =3)) 
           

The last distribution seems roughly to approach a good approximation to 
the normal curve, as the acceptable results about 

n
�ˆp�ˆ  and 

nXp�ˆ denote, in the 

last columns of Table 12.    

4.5 Pareto distribution (second case: with parameters x0=2,  =4) 

For this c.r.v., fixing now the values of the parameters by x0 = 2 and  = 4, 
the main characteristics of the distribution are  = 2.66667, 2 0.88889 
and  = 0.76191. The third moment exists (but the fourth still does not 
exist), so we expect a better behaviour than in the previous case. The 
simulated data obtained for this distribution, choosing a sample size n = 30, 
are presented in Table 14. 

 
Table 14.  Simulation data for the evaluation of the tails of the distribution of the 
s.m.d. n

�ˆ , sampling from the Pareto  with x0 = 2,  = 4 (n=30, B =10,000 samples) 

sim

/

�ˆ
2
 sim

/

�ˆ
21
 

2/

�ˆ  
21 /

�ˆ  
n

p �ˆ�ˆ  1-  Acc. range 
sim

/
X

2
 sim

/
X

21 2/
X

21 /
X  

nXp�ˆ  

0.335 1.822 0.087 1.437 0.979 0.99 0.988-0.992 2.344 3.284 2.223 3.110 0.983 
0.369 1.567 0.175 1.349 0.971 0.975 0.970-0.980 2.372 3.162 2.281 3.052 0.973 
0.398 1.386 0.249 1.275 0.959 0.95 0.940-0.960 2.399 3.058 2.329 3.004 0.959 
0.419 1.292 0.296 1.228 0.948 0.925 0.910-0.940 2.415 3.007 2.360 2.973 0.942 
0.436 1.230 0.331 1.193 0.936 0.90 0.880-0.920 2.429 2.972 2.384 2.950 0.924 
0.463 1.144 0.385 1.139 0.905 0.85 0.820-0.880 2.449 2.919 2.419 2.914 0.882 

 

Also in this case the values of the simulated quantiles sim�ˆ
2 and sim�ˆ

21  are 

higher than their asymptotic values 2
�ˆ  and  21

�ˆ  (see columns 1-4 of 

Table 14). The simulated probabilities 
n

�ˆp�ˆ  are outside the range of 
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acceptable values indicated in the central column (except for the case of  
= 0.025 and 0.05, for which the good values are highlighted). More 

specifically 
n

�ˆp�ˆ  is greater than the right threshold of acceptable ranges for 

> 0.05, and it is lower than the left threshold for = 0.01). This denotes a 
high asymmetry in the distribution of n

�ˆ , so that the tails of the distribution 
of n

�ˆ  remarkably differ from the tails of a normal distribution. The results 
observed for 

n
�ˆp�ˆ  are confirmed also by

nXp�ˆ , indicating an analogous 

behaviour for the tails of nX . 
The simulated distribution of n

�ˆ for n = 30 is graphically represented in 
Figure 9. 
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Figure 9. Simulated distribution of the s.m.d. n
�ˆ (by 10,000 samples, n=30, 

drawn from the Pareto distribution with x0 = 1,   = 3) 
 

The values for sim�ˆ vary in a wide range: from a minimum value of 
0.20564 to a maximum of 7.01243. The heavy right tail is confirmed by the 
asymmetry index, shown in Table 16, evaluated for each chosen sample size 
n. Clearly, we expect that this behaviour will weaken as n increases. 

As before, simulation data for other values of the sample size n are shown 
in detail in Table 15.  

 
Table 15.  Simulation data for the evaluation of the tails of the distribution of the 
s.m.d. n

�ˆ  sampling from the Pareto distr. with x0 =2,  =4 (by B = 10,000 samples) 

n = 60  n = 120 n = 240 n = 480 n = 960 

1-  Acc. range
 

n
p �ˆ�ˆ  

nXp�ˆ   
n

p �ˆ�ˆ
nXp�ˆ  

n
p �ˆ�ˆ

nXp�ˆ  
n

p �ˆ�ˆ
nXp�ˆ  

n
p �ˆ�ˆ  

nXp�ˆ  

0.99 0.988-0.992  0.981 0.983  0.984 0.985  0.988 0.990  0.986 0.988  0.988 0.989 
0.975 0.970-0.980  0.971 0.972  0.972 0.974  0.977 0.977  0.974 0.977  0.973 0.974 
0.95 0.940-0.960  0.957 0.953  0.958 0.953  0.958 0.958  0.953 0.955  0.949 0.948 
0.925 0.910-0.940  0.941 0.935  0.941 0.934  0.940 0.934  0.931 0.929  0.926 0.924 
0.90 0.880-0.920  0.927 0.915  0.921 0.915  0.921 0.912  0.910 0.903  0.903 0.901 
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0.85 0.820-0.880  0.890 0.870  0.881 0.871  0.874 0.865  0.862 0.854  0.853 0.851 
 

 

The simulated probabilities are better than those evaluated for sampling 
from the first case of Pareto distribution; they are out of the accepted ranges 
roughly only in 75% of all cases determined by a different value of  and n. 
The situation is somewhat better for 

nXp�ˆ than for
n

�ˆp�ˆ . Both improve as the 

sample size n increases.  
 
Trying to summarize the observed results on n

�ˆ for all values of  and n 
and to compare the influence of heavier tails in the underlying distribution, 
for the Pareto with right tail given by 4x , 

n
�ˆp�ˆ has only 11 acceptable values 

(cfr. Tables 11-12) while for the Pareto with right tail given by 5x , 

n
�ˆp�ˆ achieve 21 good values (see Tables 14-15). Analogously, the same 

behaviour is observed on the tails of nX , as 
nXp�ˆ  has only 18 good 

evaluations in the first Pareto case and 28 acceptable values reported in this 
section.  

 
A synthetic overview of the main characteristics of the simulated 

distribution is given in Table 16, compared to their theoretical or asymptotic 
values. 

 

Table 16.  Values of some indices of the asymptotic distribution of the s.m.d. n
�ˆ , 

compared with the simulated values obtained by B = 10,000 s.w.r. from the Pareto 
(x0 = 2,  = 4) and the theoretical values for nVar �ˆ  

Simul. values n = 30 n = 60 n = 120 n = 240 n = 480 n = 960 Asympt. values. 

M1( sim�ˆ ) 0.76174 0.76242 0.76229 0.76183 0.76147 0.76123 E( n
�ˆ )=0.76191 

Me( sim�ˆ ) 0.71468 0.73524 0.74758 0.75369 0.75702 0.75912 0.76191 

3( sim�ˆ ) 2.76495 1.25334 0.97897 0.61670 0.49237 0.31965 0.0 

( sim�ˆ ) 0.26833 0.18370 0.12912 0.09006 0.06521 0.04647  

nVar �ˆ  0.26193 0.18494 0.13068 0.09237 0.06531 0.04617  
 

The sign of the third simulated moments of n
�ˆ  denotes positive 

asymmetry, even if they decrease as the sample size augments. The 
simulated distributions of n

�ˆ  are simultaneously peaked and have a long 
right tail, as one can see in Figure 10, for sample sizes n = 60, 120, 240, 480 
and 960, in which also the range of values of sim�ˆ is indicated. 
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n = 120 ( sim�ˆ range: 0.407-2.168) 
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 n = 480 ( sim�ˆ range: 0.572-1.142) 
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Figure 10. Simulated distributions of the s.m.d. n
�ˆ (by 10,000 samples, drawn from 

the Pareto  (x0 = 2,  = 4)) 
 

The last distribution seems roughly to approach a good approximation with 
the normal curve, as the acceptable results about 

nXp�ˆ  and 
n

�ˆp�ˆ  indicate,  in 

the last columns of Table 15.    
Other simulations were done with different values of the parameter  : the 

high asymmetry and the long right tail in the distribution of the s.m.d. n
�ˆ  

gradually  decreases as the value of   increases. 
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5. Concluding remarks 

A simulation study has been developed to explore the minimum sample sizes 
required for a good approximation of the sample mean difference 
distribution to the normal curve. In general, how large n has to be for a good 
approximation depends on the population distribution from which the 
samples are drawn. This work shows that the shape of the underlying 
distribution can be very critical to construct confidence intervals.  

In particular, when samples are drawn from symmetrical continuous 
variables, some very slight asymmetry in the distribution of the sample mean 
difference does not affect the desirable behaviour of its tails and the normal 
approximation is good, already for sample sizes n = 30, for all considered 
values of the risk , from 0.01 to 0.15.  

Sampling from the Exponential distribution, i.e. considering an 
asymmetric distribution, still leads to low minimum required sample sizes:  
n = 30 assures a good approximation to the tails of the Normal distribution 
for the sample mean difference for all chosen values of the nominal 
confidence. 

For these three continuous distributions, a substantial agreement is 
observed between the behaviour of the sample mean difference and that of 
the sample mean, with reference to the goodness of the tails approximation 
by their asymptotic distribution.  

 Conversely, in sampling from the Pareto distribution that does not possess 
all finite moments, the sample mean difference presents a different 
behaviour from that of the sample mean: the minimum sample sizes assuring 
a good approximation for the sample mean are strongly lower than those 
needed for the sample mean difference. Remarkably, the values of the risk   
seriously affect the results about the sample mean difference. Actually, good 
probability coverage is attained, for sample sizes n > 480, only for the Pareto 
distribution that possesses the third moment.  

Naturally we do not have enough elements to generalize these results, but 
surely this topic deserves further investigation, by the analysis of more 
simulations coming from a wider set of continuous distributions. A deeper 
understanding about the effect that asymmetry and heavy tails (in the 
underlying distribution) carry on the distribution of the sample mean 
difference is still needed.  

Further analysis can be carried out considering that, in a non parametric 
context, the variance of n

�ˆ is not known and must hence be estimated. In this 
case the unbiased estimator )( n

�ˆarV�ˆ  can be used. As one can show, the 
studentized n

�ˆ  still converges to the normal, and it will be the aim of future 
work. 
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