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Abstract

The accurate estimating of the volatility is essential in pratically all �nancial mod-

elings, viz derivatives pricing, portfolio selection and risk management. This thesis

concerns with the problem of estimating the functional form of the di�usion coe�-

cient. The estimation procedure considered here is based on the seminal approach

introduced by Florens-Zmirou (1993). The approach is derived from a kernel regres-

sion introduced by Nadayara and Watson which is a two step procedures. Firstly

we will locally construct the estimator of the spot variation by means of realized

volatility. The realized volatilty has gained much importance due to the increased

availability of high-frequency data on practically every �nancial asset traded in the

principal marketplaces. The importance of high frequency data for this purpose

traces back from the osservation of Merton (1980), who noted that the variance over

a �xed interval can be estimated as the sum of squared realizations, provided the data

are available at a su�ciently high sampling frequency, see Andersen et al. (2003).

After estimating the quadratic variation, the di�usion coe�cient can be found out

readily using kernel regression.

In this dissertation, two main contributions are made: we review the existing

nonparametric estimators in the literature, and then we use others new spot volatility

to enlarge these classes of estimators. Secondly, we use the estimated volatility to

price European call options written on S&P 500 index.

We organize our dissertation with the following structure.

In Chapter 1 we will focus on presenting basic notions of stochastic processes,

semimartingale, stochastic integral and stochastic di�erential equation which are

essential to introduce quadratic variation.
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In Chapter 2, we review the main problems concerning high frequency data in

�nance. Successively we present the di�erent estimators of the quadratic variation,

and we also concern with the problems of correcting these estimators when the mi-

crostructure are taken into account. Futhermore, from integrated volatility, we derive

spot volatilities from which the di�erent nonparametric estimator are constructed.

In Chapter 3 we review the concept of the kernel estimator which will help us

to construct our nonparametric volatility estimator and successively we are going to

focus on the theory of local time with which we will prove the consistency and the

asymptotic normality of the estimators.

In Chapter 4 we provide simulations to investigate the �nite sample properties

and the performance of the competing nonparametric estimators of the di�usion func-

tion proposed for the continuous time Itô-di�usion process, when discretely sampled

observations over the �x time period are available.

Finally, in Chapter 5 we will use the nonparametric estimators for pricing euro-

pean call options written on the S&P 500 index. This problem can be tackled using

parametric approaches (Black & Schole, 1973; Derman & Kani, 1994; Dupire, 1994),

as well as with nonparametric techniques (Stanton, 1997; Jiang, 1998; Ait-Sahalia

& Lo, 1998). Following the last stream of the literature, we use the di�erent non-

parametric estimators of the di�usion coe�cient for pricing options where the main

purpose is to compare the competing estimators in their ability in �guring out a

�right price�. Assuming that the underlying asset price follows di�usion processes,

by imposing suitable conditions on the kernel, we can obtain the volatility func-

tion of the underlying asset-return process. The constructed volatility will be the

continuous-state analog to the implied binomial tree proposed by Rubinstein (1994)

and Derman and Kani (1994), and the implied volatility function in Dupire (1994),

and Dumas, Fleming, and Whaley (1995). The prices obtained with the nonparamet-

ric are consistent with options pricing theory. Furthermore, the estimated volatility

prevailing in our models evidences the main features of the true implied volatility

and are in line generally with those in the literature for the six classes in which we

have divided our sample.
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Chapter 1

Basic notions on stochastic process

In this preliminary Chapter, after presenting basic notions on stochastic processes,

we are subsequently going to de�ne the quadratic variation and its properties as an

important tool in the stochastic process theory (Protter , 2004).

1.1 Preliminaries

We assume as given a complete probability space (
;F ; P ). In addition we are given

a �ltration (Ft)0�t�1: By �ltration we mean a family of ��algebras (Ft)0�t�1 that

is increasing, i.e.,Fs � Ft if s � t. For convenience, we will usually write = for the

�ltration (Ft)0�t�1

De�nition 1. A �ltered complete probability space (
;F ;=; P ) is quali�ed to satisfy
the usual hypotheses if

(i) F0 contains all the P�null sets of F ;

(ii) Ft = \u>tFu; all t; 0 � t � 1; that is, the �ltration = is right continuous.

We continue by introducing the de�nition of a process, and some others useful

de�nitions.

De�nition 2. A process is a family X = (Xt)t2Rd of random variables from 
 to

some set E.
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In our case, the set E will be usually R. A process can be thought as a mapping

from 
� R into E.

De�nition 3. A trajectory of the process X is de�ned as the mapping t ! X(!)

for a �xed ! 2 
.

A stochastic process X is said to be càdlàg if a.s. all its trajectories are right-

continuous and admit left-hand limits. It is said to be càg if a.s. all its trajectories

are left-continuous.

If a process is càdlàg, it is always possible to de�ne two others processes, X� and

4X as follow:

X0� = X0; Xt� = limXs
s!t

(1.1.1)

4Xt = Xt �Xt� (1.1.2)

If the trajectory is continuous in t, then Xt� = Xt and 4Xt = 0:

De�nition 4. A process is said to be adapted to the �ltration = if Xt 2 Ft (that is,

Ft�measurable) for every t 2 R+

Since the concept of quadratic variation is the cornerstone in studying realized

volatility, it is important to identify processes of �nite variation for every trajectory.

That is

V ar(X) = lim
n!1

X
1�k�n

��Xtk=n(w)�Xt(k�1)=n(w)
�� <1 (1.1.3)

We denote by V the set of all real-valued processes X that are càdlàg, adapted,

withX0 = 0 and whose trajectoryXt(w) has a �nite variation over each �nite interval

[0; t].

We then abbreviate by X 2 V the fact that X is an adapted process with �nite

variation.

Before ending this subsection we give the de�nition of increasing and predictable

processes
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De�nition 5. A process X is said to be increasing if it is càdlàg, adapted, with

X0 = 0 and such that each trajectory is non-decreasing.

De�nition 6. A �-�eld is said to be predictable, if it is the �-�eld on 
� R+ that

is generated by all càg adapted processes. Every process which is measurable with

respect to the predictable �-�eld is predictable.

1.2 Stopping times and subdivisions

The concept of stopping time is very useful in econometric analysis, since economic

data are recorded at discrete points in time.

De�nition 7. A random variable T : 
 ! R+ is a stopping time if the event

f! j T (!) � tg 2 Ft for all t 2 R+.

Given a process X and a stopping time T; we de�ne the stopped process as XT
t =

XT^t. Among other things, stopping times are necessary to introduce the localization

procedure.

De�nition 8. If C is a class of processes, we de�ne the localized class Cloc as follows:
a process X belong to Cloc if and only if there exists an increasing sequence Tn of

stopping time such that limn!1Tn =1 a.s. and that each stopped process XTn 2 C.

The sequence Tn is called localizing sequence. It is clear that C �Cloc.
A sequence �n of stopping time with �0 = 0; sup

n2N
�n <1 and �n<�n+1 on the set

f�n <1g is called an adapted subdivision. Among subdivisions, we will consider the

Riemann sequence.

De�nition 9. A sequence �n;m; m 2 N of adapted subdivisions is called a Riemann

sequence if lim
n!1

sup
m2N

[�n;m+1 � �n;m] = 0 for all t 2 R+.
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1.3 Martingales

Among processes, a very important class is given by martingales. In this section, we

describe some of their basic properties which we shall use throughout this work.

De�nition 10. A real-valued, adapted process X = (Xt)t2R+ is called a martingale

with respect to the �ltration = if

(i) Xt 2 L1(dP ); that is, EfjXtjg <1;

(ii) if s � t, then Xs = E[Xt j Fs] a:s:

De�nition 11. A martingale X is square-integrable if sup
t2R+

E[X2
t ] <1.

Two special classes of martingales play an important role when dealing with local

time analysis, namely: local martingales and locally square-integrable martingales.

De�nition 12. A locally square-integrable martingale is a process that belongs to

the localized class constructed from the class of square-integrable martingales.

De�nition 13. A local martingale is a process that belongs to the localized class

of uniformly integrable martingales, that is of martingales X such that the family of

random variable is uniformly integrable.

The above de�nition follows by the fact that, each martingale X which is locally

squared-integrable is a local martingale. The class of local martingale can be obtained

by localization of the class of martingale also. This allows us to state the following:

Proposition 14. Each martingale is a local martingale

Proof. Let X be a martingale, and consider the sequence of stopping times Tn = n.

Then, for every t 2 R+, we have X
Tn
t = E[Xn j Ft]: Since the class of uniformly inte-

grable martingales is stable under stopping, we have that XTn is uniformly integrable

as well.

Let X�
t = sup

s�t
jXsj and X� = sup

s
jXsj :
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Theorem 15. Let X be a local martingale such that EfX�
t g < 1 for every t � 0.

Then X is a martingale. If EfX�g <1; then X is a uniformly integrable martingale.

Proof. Let (Tn)n�1 be a fundamental sequence of stopping times for X. Provided s �
t, then EfXt^TnjFsg = Xs^Tn : And applying the Dominated Convergence Theorem,

we obtain EfXtjFsg = Xs. If EfX�g < 1; since each jXtj � X�; it follows that

(Xt)t�0 is uniformly integrable. Where we call fundamental sequence a sequence

of increasing stopping time, Tn; with limTn
n!1

= 1 a.s. such that Xt^T1fTn>0g is a

uniform integrable for each n.

De�nition 16. Two local martingalesM;N are said to be orthogonal if their product

MN is a local matingale. A local martingale X is called a purely discontinuous local

martingale if X0 = 0 and if it is orthogonal to all continuous local martingales.

Proposition 17. Let X be always a local martingale, then

1. A local martingale X is orthogonal to itself if and only if X0 is square integrable

and X = X0 up to null sets.

2. A purely discontinuous local martingale which is continuous is a.s. equal to 0.

3. A local martingale X with X0 = 0 is purely discontinuous if and only if it is

orthogonal to all continuous bounded martingales Y with Y0 = 0.

4. A local martingale in V is purely discontinuous.

Theorem 18. Any local martingale X admits a unique (up to null sets) decomposi-

tion:

X = X0 +Xc +Xd (1.3.1)

where Xc
0 = Xd

0 = 0; Xc is a continuous local martingale and Xd is a purely discon-

tinuous local martingale.

Theorem 19. For each pair M,N of locally square-integrable martingales there ex-

ists a unique, up to null measure sets, predictable process < M;N >2 V such that

MN� < M;N > is a local martingale.
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1.3.1 Semimartingales

Let us denote by L the set of all local martingales M such that M0 = 0.

De�nition 20. A semimartingale is a decomposable process X of the form X =

X0 +M + A where X0 is �nite-valued and F0�measurable, M 2 L and A 2 V .

If there exists a decomposition such that A is predictable, X is called a special

semimartingale.

From the de�nition is clear that if X 2 V then it is a semimartingale. Obviously

the decompositionX = X0+M+A is not unique, but ifX is a special semimartingale

then there is a unique decomposition with A predictable (Back, 1991). Given that

a semimartingale is the sum of a local martingale and a process of �nite variation,

we can naturally decompose it in a continuous and discontinuous part in the same

fashion of Theorem 18:

Proposition 21. Let X be a semimartingale. Then there is a unique (up to null

sets) continuous local martingale Xc such that Xc;0 = 0 and any decomposition

X = X0 +M + A of type (1.3.1) meets M c = Xc up to null sets.

Proof. It is enough to use Theorem 18 and Proposition 17.

Proposition 22. Let F (t) be a real-valued function on R+, and de�ne the process

X(t) = F (t). Then X is a semimartingale if and only if F is càdlàg, with �nite-

variation over each �nite interval.

Proof. For the su�ciency, it is enough to use the de�nition of semimartingales.

For the converse, see Jacod and Shiryaev (1987),

1.3.2 Stochastic integral

Let A be an increasing process, �x ! such that, if f is a bounded Borel function on

R+, we denote by
� t

0
f(s)dAs(!) the Stieltjes integral of f with respect to A(!)

Let H be a càdlàg process, when the integrand H has continuous paths, the Stielt-

jes integral
� t

0
HsdXs is also known as the Riemann-Stieltjes integral (for �xed !),
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Where X 2 V . In this case we can de�ne the integral as a limit of an approximated

sum.

Theorem 23. Let X 2 V and let H be a jointly measurable process such that

a:s: s ! H(s; !) is continuous. Let �n be a sequence of �nite random partitions of

[0; t] with lim
n!1

mesh(�n) = 0. Then for Tk � Sk � Tk+1;

lim
n!1

X
Tk;Tk+12�n

HSk(XTk+1
�XTk) =

� t

0

HsdXs a:s: (1.3.2)

This de�nition stems from the fact that, if X 2 V , then its trajectories are the

distribution functions of a signed measure. We want now to de�ne the stochastic

integral when X is a semimartingale. In this case, the trajectories do not necessarily

de�ne a measure; for example, the Wiener process has in�nite variation over each

�nite interval. Now consider a generic process X. The stochastic integral can be

naturally de�ned for processes H such that

Ht = H01f0g +
nX
i=1

Hi1(Ti;Ti+1](t)

where 0 = T1 � ::: � Tn+1 < 1 is a �nite sequence of stopping times, Hi 2 FTi

with jHij <1 a:s:; 0 � i � n. We can then de�ne:

JX(H) = H0X0 +
nX
i=1

Hi(X
Ti+1�Ti) (1.3.3)

The peculiar property of semimartingales is that this de�nition can be extended

to any locally bounded predictable process H if and only if X is a semimartingale.

The feasibility of the extension for semimartingales is stated in the following theorem

Theorem 24. Let X be a semimartingale. Then the mapping (1.3.3) has an exten-

sion to the space of all locally bounded predictable processes H, with the following

properties:
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1) Gt =
� t

0
HsdXs is a càdlàg adapted process

2) the mapping H ! �
HdX is linear

3) If a sequence Hn of predictable processes converges pointwise to a limit H,

and if jHnj < K, where K is a locally bounded predictable process, then
� t

0
Hn
s dXs

converges to
� t

0
HsdXs in measure for all t 2 R+.

Moreover this extension is unique, up to null measure sets, and in 3) above the

convergence is in measure, uniformly on �nite intervals: sup
s�t

���� t

0
Hn
s dXs �

� t

0
HsdXs

���!
0.

A complete proof of the above Theorem can be found in Dellacherie and Meyer

(1976). It is important to state the following properties, which we state without

proof.

Proposition 25. Let X be a semimartingale and H;K be locally bounded predictable

process. Then the following properties hold up to null sets:

1.The mapping H ! �
HdX is linear.

2.
�
HdX is a semimartingale; if X is a local martingale, then

�
HdX is a local

martingale

3.If X 2 V then
�
HdX 2 V .

4.(
�
HdX)0 = 0 and

�
HdX =

�
Hd(X �X0):

5.4(
�
HdX) = H4X

6.
�
Kd(

�
HdX) =

�
HKdX:

The stochastic integral of a predictable process that is left-continuous can be

approximated by Riemann sums. Consider a subdivision �n. Then the � -Riemann

approximant of the stochastic integral
�
HdX is de�ned as the process �(

�
HdX)

de�ned by

�(

�
HdX)t =

X
n2N

H�n(X�n+1^t �X�n^t) (1.3.4)

We then have the following:

Proposition 26. :Let X be a semimartingale, H be a càg adapted process and �n-

Riemann sequence of adapted subdivisions. Then the �n-Riemann approximants con-

verge to
�
HdX, in measure uniformly on each compact interval



CHAPTER 1. BASIC NOTIONS ON STOCHASTIC PROCESS 15

Proof. Consider �n;m and de�ne Hn by

Hn =
X
m2N

H�n;m1]�n;m;�n;m+1] (1.3.5)

Then Hn is predictable, converges pointwise to H, since H is càg. Now consider

Kt = sup jHsj
s�t

. The process K is adapted, càg, locally bounded andjHnj < K. Then

the result follow from Theorem 23 and from the property �n(
�
HdX) =

�
HndX.

1.4 Quadratic variation

The quadratic variation process of two semimartingales, also known as the bracket

process, is a simple object that nevertheless plays a fundamental role, especially in

mathematical �nance. In this subsection we de�ne it and state its most important

properties.

De�nition 27. The quadratic variation of two semimartingales X and Y is de�ned

by the following process:

[X; Y ]t = XtYt �X0Y0 �
� t

0

Xs�dYs �
� t

0

Ys�dXs (1.4.1)

From the de�nition itself, it is straightforward to verify the following properties:

Proposition 28. The quadratic variation of two semimartingales X; Y has the fol-

lowing properties:

1. [X; Y ]0 = 0

2. [X; Y ] = [X �X0; Y � Y0]

3. [X; Y ] = 1
4
([X + Y;X + Y ]� [X � Y;X � Y ]) (polarization)

The following analysis is crucial for at least two reasons. First, the name quadratic

variation comes after Theorem 29. Second, it is the basis for realized volatility, a
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concept which will be illustrated in the following chapters. Indeed, it allows an

estimation of quadratic variation.

Theorem 29. Consider a sequence of possibly random partitions of [0; T ]. Then for

every Riemann sequence (�n) � f�n;mgm�0; n = 0; 1; 2:::where �m;0 � �m;1 � �m;2 �
::: satisfy, with probability one, for n!1.

�n;0 ! 0; sup
m�0

�n;m ! T ; sup
m�0

(�n;m+1 � �m;m)! 0 of adapted subdivisions,

Then for t 2 [0; T ] the process S�n(X; Y ) de�ned by:

S�n(X; Y )t =
X
m�1

(X�n;m+1^t �X�n;m^t)(Y�n;m+1^t � Y�n;m^t) (1.4.2)

where t^ � = min(t; �) converges, for n!1, to the process [X; Y ]t, in measure

and uniformly on every compact interval.

Proof. By polarization, it su�ces to prove the claim for X = Y . From equation

(1.3.4) we get: S�n(X;X) = X2 �X2
0 � 2�n(

�
X�dX)

The last term converges to �(
�
X�dX), then S�n(X;X) converges to [X;X].

Proposition 30. Let X and Y be two semimartingales.

1. [X; Y ] 2 V

2. [X;X] is increasing.

3. 4[X; Y ] = 4X4Y

4. If T is a stopping time, then [XT ; Y ] = [X; Y T ] = [XT ; Y T ]

The property 3 implies that if X or Y is continuous, then [X; Y ] is continuous as

well.

Proposition 31. If X are a special semimartingale and Y 2 V then:

1. [X; Y ]t =
� t

0
4XsdYs
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2. XtYt =
� t

0
YsdXs +

� t

0
XsdYs

3. If Y is predictable, then [X; Y ]t =
� t

0
4YsdXs

4. If X and Y are continuous then [X; Y ] = 0

Lemma 32. Let X be a purely discontinuous square-integrable martingale. Then

[X;X] =
P
s�t

(4Xs)
2

Theorem 33. If X and Y are semimartingales, and if Xc; Y c denote their contin-

uous martingale parts, then:

[X; Y ]t =< Xc; Y c >t +
X
s�t

4Xs4Ys (1.4.3)

where the process < Xc; Y c > is called the predictable quadratic variation of the

pair (X; Y ).

Theorem 34. (Knight's Theorem) Let M1; :::;Mn be orthogonal square-integrable

martingales, and consider the time changes:

Ti(t) =

8<:infs [Bi; Bi]s > t if this is finite

+1 otherwise
(1.4.4)

Then the transformed variables :

Xi(t) =

8<:Bi(Ti(t)); if Ti(t) <1
Bi(1) +Wi(t� [Bi; Bi])1 otherwise

(1.4.5)

where W1; :::;Wn is an n-dimensional Brownian motion independent of Xi, are

an n-dimensional Brownian motion relative to their generated �ltration.

1.4.1 Stochastic di�erential equations

In this subsection, we are concerned with the following equation:
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X(t) = � +

� t

0

�(s;X(s))ds+

� t

0

�(s;X(s))dW (s); (1.4.6)

where W (s) is the standard Wiener process, which satisfy the usual hypothesis,

and we look for an adapted processX(t) 2 L2(
). The functions �; � are applications

from [0; T ] � L2(
 ! L2(
), while � is an F0 measurable process in L2(
), that is

the boundary condition. It is common to write equation (1.4.6) in the shorthand

notation: 8<:dX(t) = �(t;X(t))dt+ �(t;X(t))dW (t)

X(0) = �
(1.4.7)

Theorem 35. Assume the following assumptions hold for the existence and unique-

ness of solutions:

1 � and � are continuous

2 There exists M > 0 such that

k�(t; &)k2 + k�(t; &)k2 �M2(1 + k&k2) 8t 2 [0; T ]; & 2 L2(
)

k�(t; &1)� �(t; &2)k + k�(t; &1)� �(t; &2)k � M(k&1 � &2k) 8t 2 [0; T ]; &1; &2 2
L2(
)

3 8t 2 [0; T ]; & 2 L2(
) such that & is Ft�measurable; we have that �(t; &); �(t; &) 2
L2(
) and are Ft �measurable

Let � 2 L2(
) and F0-measurable. Then there exists a unique (up to null sets)

adapted process X(t) 2 L2(
) ful�lling equation (1.4.6).

Corollary 36. Assume the hypothesis of Theorem 35 hold. Then the (unique) solu-

tion process X is a continuous semimartingale, and

[X;X]t =

� t

0

�2(s;X(s))ds (1.4.8)

The process in (1.4.8) is commonly called integrated volatility or integrated vari-

ance in �nancial econometrics.

Proof. The result comes from the fact that, � is F0�measurable and a �nite-valued,� t

0
�(s;X(s))ds is of �nite variation, so their quadratic variation is zero and

� t

0
�(s;X(s))dW (s)
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is a local martingale, since Wiener process is a local martingale and using the propo-

sition 25. The result follows!

Lemma 37. Consider the process Y n
t de�ned on (
; (Fi)i2N; P ), as

Yt =
[nt=T ]P
i=1

�i;

where [x] is the integer part of x, with �i bounded and adapted to Fi�1, and make

the following assumptions:

� (i)
[nt=T ]P
i=1

E [�i j Fi�1]! 0 in probability ;

� (ii)
[nt=T ]P
i=1

E [�2
i j Fi�1]! Vt in probability ;

� (iii) 8" > 0;
[nt=T ]P
i=1

E
�
�2
i Ifj�ij>"g j Fi�1

� ! 0 in probability ; (conditional Linde-

berg condition).

Then Yt converges in distribution to the continuous martingale Mt with quadratic

variation [M;M ] = Vt.

It can be tempting to investigate the link between integrated volatility and real-

ized volatility. Di�erent estimators have been proposed for estimating the integrated

volatility. Nowadays, the most popular is realized volatility, The idea behind real-

ized volatility hinges on Theorem 29 ; which will be discussed thoroughly in the next

chapter.



Chapter 2

Integrated and Spot Volatility

estimation

2.1 High frequency data in �nancial markets

One of the most important success in the last years consiste in studying of the high-

frequency data, namely the observations recorded in real-time on the market. Unlike

traditional studies, in which the data are measured in equispaced interval, in the

case of high-frequency data, any single traded transaction occured in the market

is recorded. The possibility to exploit this huge quantity of information constitute

an important advantage because it allows to an accurated estimate of the volatility.

These estimations intervene almost in all �nancial applications including derivatives

pricing, portfolio selection, risk management and the liquidity management. Many

years ago �nancial applications were focused on the daily observation, nowadays,

many �nancial companies take advantage of the maximum information by using

tick-by-tick data. Every tick is considered as a logic information unit, as a quotation

or a transaction price;

Using daily data, the closed price is considered and this re�ects the trend of entire

negotiation daytime. This consideration can be misleading, in fact, when intraday

movement are not taken into account, the risk of disregarding relevant information

20
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is in�uent.

Nevertheless, using this type of data open door to several problems as far as

their collection and their handling are concerned. In fact, besides the problem of

management and put on a large quantity of observations, (million of data can be

recorded during one trading day), the observations are not equispaced, Engle and

Russell proposed ACD (Autorgressive Conditional Duration) for tackling the latter

problem. This regularization consist of modeling the time elapsed between a trans-

action and the other. One of the major concerns of the high frequency data is the

microstructure noise. In the subsection below, we will present several methods of

volatility estimation when data are contaminated.

2.2 Estimating integrated volatility

Di�erent estimators for the integrated volatility have been proposed in the literature.

Nowadays, the most popular is realized volatility, which will be discussed thoroughly

throughout. The idea behind realized volatility hinges on Theorem 29. Suppose that,

in a given trading day t, the logarithmic prices are observed tick-by-tick. Consider

a grid �t = fk0; :::; kntg containing all observation points, and set pt;i, i = 1; :::; nt,

to be the i � th price observation during day t, where nt is the total number of

observations at day t.

rt;i = pt;i � pt;i�1 is the i� th intraperiod return of day t such that

rt =
ntX

i=0

rt;i

Then the realized volatility is given by:

RV (TOT ) =
ntX
i=1

r2t;i =
ntX

(
i=1

pt;i � pt;i�1)
2 (2.2.1)

which is the sum of all available intraday high frequences squared returns.
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In Malliavin and Mancino (2002) it is showed that :

lim
n!1

RV (TOT ) =

� t

t�1

�2(s; p(s))ds a:s: (2.2.2)

2.2.1 Estimation with no microstructure noise

Suppose that, along day t, the logarithmic prices of a given asset follow a continuous

time di�usion process, as follows:

dp(t+ k) = �(t+ k)dt+ �(t+ �)dW (t+ k); 0 � k � 1; t = 1; 2::: (2.2.3)

where p(t+ k) is the logarithmic price at time t+ k, �(t+ k) is the drift component,

�(t+k)) is the spot or instantaneous volatility (or standard deviation), andW (t+k) is

a standard Brownian motion. In addition, suppose here is a null correlation between

�(t+ k) and W (t+ k) (there are orthogonal ), such that there is no leverage e�ect.

Andersen et al. (2003) and Barndor�-Nielsen and Shephard (2002) showed that

daily returns, de�ned as rt = p(t) � p(t � 1), are Gaussian conditionally on Ft �
Ff�(t+ k� 1); �(t+ k� 1)g0�k�0; the �-algebra (information set) generated by the

sample paths of �(t+ k � 1) and �(t+ k � 1), 0 � k � 1

rt=Ft = N

�� 1

0

�(t+ k � 1)dk;

� 1

0

�2(t+ k � 1)dk

�
The term IVt =

� 1

0
�2(t + k � 1)dk is known as the integrated variance of the

period [t � 1; t], which is a measure of the day-t ex post volatility. The integrated

variance is typically the object of interest as a measure of the true daily volatility.

Under the model (2.2.3), the approximation in (2.2.1) is justi�ed by the theoret-

ical results in stochastic processes which state that

plim
ntX

(
i=1

pt;i � pt;i�1)
2 =

� t

0

�2(t)dt (2.2.4)
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as the sampling frequency increases.

In practice, prices are observed at discrete and irregularly spaced intervals. In this

sense, there are many ways in which one can sample the data. We always suppose

that in a given day t, we partition the interval [0; 1] in nt subintervals and de�ne the

grid of observation times as �t = fk0; :::; kntg; where 0 = k0 < k2 < ::: < knt = 1.

The length of the i� th subinterval is given by �i;nt = ki � ki�1. It is assumed that

the length of each subinterval shrinks to zero as the number of intraday observations

increases. The integrated variance over each of the subintervals is de�ned as

IVi;t =

� ki

ki�1

�2(t+ k � 1)dk

There are several sampling schemes that can be used, as follows:

1. The most widely used sampling scheme is calendar time sampling (CTS),

where the intervals are equidistant in calendar time, that is, �i;nt =
1
nt

for all i. For

example, the prices may be sampled every 5 or 15 minutes. As the intraday data are

irregularly spaced, in most cases calendar time sampled data must be constructed

arti�cially (see Andersen and Bollerslev, 1997). Hansen and Lunde (2006b) showed

that the previous tick method is a sensible way to sample prices in calendar time.

For example, during a �ve-minute interval, we may observe several prices, in which

case the previous tick method takes the �rst observation as the sampled price.

2. Another sampling alternative is transaction time sampling (TrTS), where

prices are recorded every m� th transaction.

3. The third sampling scheme is known as business time sampling (BTS), where

the sampling times are chosen such that IVi;t =
IVt
nt
.

4. The last sampling alternative is called tick time sampling (TkTS), where prices

are recorded at every price change.

An important di�erence among these distinct sampling schemes is that the obser-

vation times in BTS are latent, whereas in CTS, TrTS, and TkTS they are observed.

Several authors have studied the behaviour of realized volatility: Andersen et

al. (2003) showed, using a seminal result in semimartingale process theory that, the

realized variance using all data available, as de�ned in equation (2.2.1), is a consistent
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estimator of the integrated variance when there is no microstructure noise, such that

RV
(TOT )
t

p! IVt

From the results in Jacod and Protter (1998), Barndor�-Nielsen and Shephard

(2002) derived the asymptotic distribution of the realized variance as

n
1=2
t

1p
2IQt

(RV
(TOT )
t � IVt)

L! N(0; 1); (2.2.5)

where the integrated quarticity, IQt, is de�ned as

IQt =

� 1

0

�4(t+ k � 1)dk (2.2.6)

Proof. Consider a real number k = T=n:We de�ne the equally space sampled returns

as:

4jX = Xjk �X(j�1)k; j = 1; :::; n (2.2.7)

and we de�ne the realized variance as:

RVk(X)t =

[t=k]X
j=1

(4jX)2 (2.2.8)

It follows from Ito's lemma that:

X2
t = [X]t + 2

� t

0

XsdXs

thus

r2j = (Xjk �X(j�1)k)
2 = [X]jk � [X](j�1)k + 2

� t

0

(Xs �X(j�1)k)dXs

which implies

k�1=2(RVk(X)t � [X]t) = 2k�1=2
[t=k]X
j=1

� kj

k(j�1)

(Xs �X(j�1)k)dXs
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2

� k[t=k]

0

(Xs �Xk[t=k])dXs

As k ! 0; the right term converges to (Jacod and Protter,1998);

k�1=2
� k[t=k]

0

(Xs �Xk[t=k])dXs ! 1p
2

� t

0

�2sdw
t
s

so that

k�1=2(RVk(X)t � [X]t)!MN(0; 2

� t

0

�4sds) (2.2.9)

Bandi and Russell (2005a) gave an alternative simple proof of the above result.

Furthermore, under the assumption of no microstructure noise, Barndor�-Nielsen

and Shephard (2002) showed that the integrated quarticity is consistently estimated

by the realized quarticity, which is de�ned as

RQ
(TOT )
t =

nt
3

ntX
i=0

r4t;i (2.2.10)

and

n
1=2
t

1q
2
3
IQt

(RV
(TOT )
t � IVt)

d! N(0; 1);

This asymptotic result allows to construct feasible con�dence intervals for the

realised volatility estimator.

Barndor�-Nielsen and Shephard (2005b), Meddahi (2002), and Nielsen and Fred-

eriksen (2006) studied the �nite sample behavior of the limit theory given in (2.2.4).

The main conclusion is that (2.2.4) is poorly sized, but

n
1=2
t

1r
2
3

RQ
(TOT )
t

(RV
(TOT )
t )2

[log(RV
(T0T ))
t � log(IVt)

d

]! N(0; 1);
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performs quite well.

2.2.2 The e�ect of microstructure noise

In this section we discuss the e�ects of the presence of microstructure noise in the

estimation of the integrated variance. Market microstructure noise has many sources,

including the discreteness of the price (see Harris, 1990, 1991), and properties of the

trading mechanism, as in Black (1976). As in the previous section, we consider the

grid of observation times, �t = fk0; :::; kntg. Following the notation in Zhang et al.

(2005), we set pt;i � p(t+ ki). Suppose also that the logarithmic prices are observed

with noise, that is,

pt;i = p�t;i + "t;i; (2.2.11)

where p�t;i is the latent true, or e�cient price process and "i;t, is the microstructure

noise.

It follows that

rt;i = r�t;i + "t;i � "t;i�1 = r�t;i + �t;i (2.2.12)

where r�t;i = p�t;i � p�t;i�1 is the e�cient return. It is clear that rt;i, is an autocor-

related process, then RV
(TOT )
t cannot be an unbiased estimator of the latent daily

volatility, as discussed in section 2.2.1. Furthermore as

RV
(TOT )
t =

ntP
i=1

�
r�t;i
�2

+
nt

2
P
i=1

r�t;i�i;t +
ntP
i=1

�2t;i,

With straightforward calculus, it is possible to show that, conditionally on the

e�cient returns,

E(RV
(TOT )
t jr�) = RV �(TOT )

t + 2ntE("2t;i);

such that RV
(TOT )
t is also a biased estimator of the integrated variance under

microstructure e�ects.

As in Bandi and Russell (2005a), consider the following assumption regarding the

noise structure.

Assumption 1 (Noise Structure).
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(a) The microstructure noise, "t;i; has zero mean and is a covariance stationary

stochastic process.

(b) The variance of �t;i = "t;i � "t;i�1 is O(1).

Under Assumption 1, Bandi and Russell (2005a) showed that

RV
(TOT )
t

a:s!1 as nt !1

Furthermore, consider the following assumption.

Assumption 2

(a) The microstructure noise, "t;i, has zero mean and is an independent and

identically distributed random variable.

(b) The noise is independent of the price process.

(c) The variance of �t;i = "t;i � "t;i�1 is O(1).

Under Assumption 2, it was shown in Zhang et al. (2005) that

n
�1=2
t [RV

(TOT )
t � IVt � 2ntE("2t;i)

d

]! 2[E("4t;i)]
1=2N(0; 1):

In practical applications, even sampling at the highest available frequency, the

number of intraday observations is �nite and the price records are discrete. This

introduce a bias due to discretization, such that

RV
(TOT )
t

d� IVt + 2ntE("2i;t| {z })
bias due to noise

+

26644ntE("4t;i)| {z }
due to noise

+
2

nt

� 1

0

�4t dt| {z }
due to discretization

3775
| {z }

total variance

1=2

N(0; 1);

where "
d

� " means that, when multiplied by a suitable factor, the convergence is

in distribution. Recently, Zhang (2006a) and Aït-Sahalia et al. (2006), considered

the case where the noise is not IID, such that Assumption 2 is modi�ed as follows.

Assumption 3 (Dependent Noise Structure).

(a) The microstructure noise, "i;t , has a zero mean, stationary, and strong mixing
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stochastic process, with the mixing coe�cients decaying exponentially. In addition,

E[("t;i)
4+�] <1; for some � > 0.

(b) The noise is independent of the price process.

(c) The variance of �t;i = "t;i � "t;i�1 is O(1):

Under Assumption 3, Zhang (2006a) and Aït-Sahalia et al. (2006) showed that

RV
(TOT )
t

d� IVt + 2ntE("2t;i| {z })
bias due to noise

+

2664 2nt
| {z }
due to noise

+
2

nt

� 1

0

�4t dt| {z }
due to discretization

3775
| {z }

total variance

1=2

N(0; 1);

where


 = V [("t;1 � "t;0)
2 + 2

1X
i=1

Cov[("t;1 � "t;1)
2; ("t;i+1 � "t;i)

2]

The most important fact about the last result is that, for large nt, the realized vari-

ance (2.2.1) may have no connection to the true returns. On the contrary, RV
(TOT )
t

diverges to in�nity linearly in nt. In addition, Bandi and Russell (2005a) and Zhang

et al. (2005) showed that, scaled by (2nt)
�1, the realized variance estimates the

variance of the microstructure noise consistently, such that

1

2nt
RV

(TOT )
t

p! E("2i;t) (2.2.13)

As recommended in Andersen et al. (2000a, 2001a, 2003), one possible solution

to the microstructure bias is to sample the returns at arbitrarily selected lower fre-

quencies, such as every 5 or 15 minutes, instead of at every tick. This procedure

is called sparse sampling. However, Zhang et al. (2005) showed that this is not

an adequate solution to the problem because most of the information contained in

high frequency data is lost. First, de�ne a new grid �
(sparse)
t , with n

(sparse)
t sparsely
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equidistant sampled observation times. Clearly, �
(sparse)
t is a subgrid of �t. Set

RV
(sparse)
t =

n
(sparse)
tX
i=1

r2t;i: (2.2.14)

where rt;i is the i-th return over the grid �
(sparse)
t .

Based on the results of Rootzen (1980), Jacod and Protter (1998), Barndor�-

Nielsen and Shephard (2002), Mykland and Zhang (2006), Zhang et al. (2005),

Zhang (2006a), and Aït-Sahalia et al. (2006) showed that the bias due to noise is

given by 2n
(sparse)
t E("2t;i) and that, under Assumptions 2 or 3,

RV
(sparse)
t

d� IVt+2n
(sparse)
t E("2t;i| {z })
bias due to noise

+

266642n(sparse)t E("4t;i)| {z }
due to noise

+
2

n
(sparse)
t

� 1

0

�4t dt| {z }
due to discretization

37775
| {z }

total variance

1=2

N(0; 1);

Although the bias is reduced when n
(sparse)
t < nt , the variance is increased due

to discretization, leading to the well-known bias-variance trade-o�.

Bandi and Russell (2005a,b) and Zhang et al. (2005) proposed a method for

selecting the optimal sampling frequency based on the minimization of the MSE.

When the Assumption 2 holds, de�ned the mean-square error as:

= E(RV
(TOT )
t �RV �(TOT )

t ) = MSE(n
(sparse)
t )

= 2n
(sparse)
t E("2t;i)+4n

(sparse)
t E("4t;i)+[8RV

(sparse)
t E("2t;i)�V ("2t;i)]+

2
nt
IQ

(sparse)
t

Thus, the optimal sampling frequency may be approximated by

n�t �
�

IQt

4[E("2t;i)]

�1=3

(2.2.15)

This optimal sampling are found minimizing the MSE as @MSE=@nsparset = 0.

Bandi and Russell (2005a, 2006b) considered equidistant sampling intervals, whereas

Zhang et al. (2005) provided a more general formula for irregularly spaced data.

However, Bandi and Russell (2005a) also considered optimal sampling with depen-
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dent noise, optimal sampling with bias-corrected realized variance estimates, and

optimal sampling with pre�ltered data.

As discussed previously, E("2t;i) may be consistently estimated by 1
2nt

RV
(TOT )
t ;

see Equation (2.2.13). Notwithstanding being a consistent estimation, an important

point that must be emphasized is that the integrated quarticity is not known, and

hence must be estimated. However, the realized quarticity, as given in Equation

(2.2.10), is not consistent in the presence of microstructure noise. Bandi and Russell

(2005a, 2006b) adopted the solution of computing (2.2.9) using a sparse set of obser-

vations, namely one that is sampled every 15 minutes. The authors showed through

simulation that such sparse sampling did not seem to have a harmful e�ect on the

selection of the optimal frequency. Zhang et al. (2005) developed an alternative so-

lution for estimating the integrated quarticity. Even though choosing the sampling

frequency on the basis of the �nite sample mean-squared-error (MSE) is optimal

in the case of realized variance, alternative estimators (discussed below) have been

proposed that have the potential, when appropriately implemented, to outperform

the classical realized variance estimator

2.2.3 Reviews of integrated volatility estimators

For having a consitent estimator, we need to minimize the bias present in the

RV
(sparse)
t estimator. We can do this using several way such as; Subsampling, Kernel-

Based Estimators, Filters and the method proposed by Large. For the �rst two

methods we will be quite eshaustive while being very synthetic for the last two.

2.2.3.1 Subsampling

Zhang et al. (2005) proposed a subsampling method in order to estimate the inte-

grated variance consistently in the presence of microstructure noise.The main idea

is to explore the fact that, for example, ten-minute returns starting at 9:30 could

be measured using the intervals 9:30�9:40, 9:40�9:50, 9:31�9:41, 9:41�9:51, and so

on. Formally, suppose that the full grid, �t = fk0; :::; ktg, is partitioned into A

nonoverlapping subgrids, �
(�)
t � = 1; :::; A such that
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�t =
A[
�=1

�
(�)
t ; where �

(�)
t \ �

(�)
t = ; when � 6= �

Set n
(�)
t as the number of observations in each subgrid, and de�ne the RV for grid

� as

RV
(�)
t =

n
(�)
tX
i=1

r2t;i (2.2.16)

The proposal of Zhang et al. (2005) is to use the following estimator for the daily

RV:

RV
(TOT )
t =

1

A

n
(�)
tX
i=1

RV
(�)
t � �nt

nt
RV

(TOT )
t ; (2.2.17)

where nt is the number of observations in the full grid, and

�nt =
1

A

AX
�=1

n
(�)
t =

nt � A+ 1

A

The estimator in (2.2.17) is called the Two Time Scales Estimator (TTSE) of the

integrated variance. Zhang et al. (2005) showed that, under Assumption 2,

n
�1=6
t [RV

(TOT )
t � IVt]

d! +

26648c�2E[("2t;i)]
2| {z }

due to noise

+ c
2

3
IQt| {z }

due to discretization

3775
| {z }

total variance

1=2

N(0; 1);

where, in the case of equidistant observations,

c =

�
1

12E[("2t;i)]
2
IQt

��1=3
In Aït-Sahalia et al. (2006), a small sample re�nement to the estimator in (2.2.17)

is proposed. The �nal estimator becomes

RV
(ZMA;adj)
t =

�
1� �nt

nt

�
RV

(ZMA)
t ; (2.2.18)
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Both of the estimators in (2.2.17) and (2.2.18) are derived under Assumption 2 (IID

noise). In order to take into account possibly dependent noise, Zhang (2006a) and

Aït-Sahalia et al. (2006) proposed an alternative estimator that is also based on the

two time scales idea. All the results are derived under Assumption 3 (non-IID noise).

First, the authors de�ned the average lag J realised volatility RV
(AL)
t;J , which is

given by

RV
(AL)
t;J =

1

J

nt�JX
i=0

(rt;i+J � rt;i)
2 (2.2.19)

Then the authors proposed a generalization of the TTSE derived in Zhang et al.

(2005), which has the form

RV
(ZMA)
t = RV

(AL)
t � �nt

(A)

�ntJ
RV

(AL)
t;J (2.2.20)

where 1 � J � A � nt; A = o(nt); as n ! 1 �nt
(A) = (nt�A+1)

A
and �nt

(J) =
(nt�J+1)

J
: Note that (2.2.19) becomes the TTSE in Zhang et al. (2005) when J =

1 and A!1 as nt !1: A small sample correction is given by

RV
(ZMA;adj)
t =

�
1� �nt

(A)

�nt(J)

�
RV

(ZMA)
t ; (2.2.21)

Zhang (2006a) and Aït-Sahalia et al. (2006) showed that

[RV
(ZMA;adj)
t

d� IVt +

2664 c�2�2| {z }
due to noise

+ c
4

3

� t

0

�4t dt| {z }
due to discretization

3775
| {z }

total variance

1=2

N(0; 1);

where c is a constant and

�2 = 16V ("t:i)
2 + 32

1X
i=1

Cov("t;0; "t;i)
2
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2.2.4 Kernel-based estimators

Consistently estimating the quadratic variation under the presence of microstruc-

ture noise is, in a sense, similar to the well-known autocorrelation corrections that

are frequently used in the time-series literature to estimate the long run variances

and covariances of stationary stochastic processes (see, for example, Andrews, 1991;

Newey and West, 1987). Consequently, it is natural to adapt similar techniques

for the present case. For example, Hansen and Lunde (2004, 2006a) considered the

following simple kernel-based estimator

RV
(HL)
t = RV

(TOT )
t + 2

HX
h=1

nt
nt � h


̂h (2.2.22)

where


̂h =
nt

nt � h

nt�hX
j=1

rt;jrj+h (2.2.23)

Zhou (1996) was the �rst to consider the use of kernel methods to deal with the

problem of microstructure noise in high-frequency data. For the case of independent

noise, Zhou proposed (2.2.22) with H = 1. Hansen and Lunde (2006b) examined

the properties of Zhou's estimator and showed that, although unbiased under As-

sumption 2, the estimator is not consistent. However, Hansen and Lunde (2006b)

advocated that, while inconsistent, Zhou's kernel method is able to uncover several

properties of the microstructure noise, and concluded that the noise:

(1) Is correlated with the e�cient price;

(2) Is time dependent;

(3) Is quite small in the DJIA stocks; and

(4) Has properties that change substantially over time. Their results are robust

to both CTS and TrTS. Moreover, selecting higher values for H does not solve the

consistency problem. However, the estimator in (2.2.22) is unbiased by an upwards

scaling of the empirical autocovariances. The h-th autocovariance is scaled by nt
nt�h

to compensate for the �missing� autocovariance terms.
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The upward scaling has the drawback that it increases the variance of the esti-

mator. For this reason, Hansen and Lunde (2005b) consider the Bartlett kernel and

de�ne the estimator

RV
(HL;Barlett)
t = RV

(TOT )
t + 2

HX
h=1

�
1� h

H + 1

�

̂h (2.2.24)

where H is determined as H =
h�

4nt
100

�2=9i
and 
̂h is de�ned as in (2.1.23). How-

ever, the estimator (2.1.24) is also inconsistent.

Recently, Barndor�-Nielsen et al. (2006a) proposed the �at-top kernel-based

estimator

RV
(BHLS)
t = RV

(TOT )
t +

HX
h=1

k

�
h� 1

H

�
^(
h + 
̂�h) (2.2.25)

where k(x) for x 2 [0; 1] is a nonstochastic weight function such that k(0) = 1 and

k(1) = 0. The authors made several contributions to the literature by:

(1) proving that the statement that all kernel based RV estimators were incon-

sistent is wrong and proposed several consistent kernel-based estimators;

(2) designing a kernel that has a smaller variance than the multiscale estimator;

(3) proposing an estimator for data with endogenously spaced observations, such

as that in databases on transactions;

(4) considering the case where the microstructure noise is endogenous.

Barndor�-Nielsen et al. (2006a) showed that, if H = cn
2=3
t , then the resulting

estimator is asymptotically mixed Gaussian, converging at rate H = n
1=6
t . The

constant, c, can be optimally chosen as a function of the kernel k(x). For example,

the value of c that minimizes the variance of the estimator is given by

c =

(
2 [k0(0)2 + k0(1)2]� 1

0
k(x)2dx

)1=3 �
E("2t;i)

�2=3
IQ3

t

Barndor�-Nielsen et al. (2006a) also compared three di�erent kernels:

(1) Bartlett where k(x) = 1� x;

(2) the 2nd order where k(x) = 1� 2x� x2;



CHAPTER 2. INTEGRATED AND SPOT VOLATILITY ESTIMATION 35

(3) Epanechnikov where k(x) = 1� x2.

Their �ndings are summarized as follows: the Bartlett kernel has the same asymp-

totic distribution as the TTSE of Zhang et al. (2005) and is more e�cient than the

Epanechnikov alternative, but is less e�cient than the 2nd order kernel. Moreover,

if k0(0) = 0 and k0(1) = 0, then setting H = cn
1=2
t , the asymptotic distribution of the

estimator is mixed normal with convergence rate equal to n
1=4
t . Under microstruc-

ture e�ects, Barndor�-Nielsen et al. (2006a) discussed the choice of the constant c

in a simpli�ed framework where the variance of the e�cient price is held constant.

In their article, the authors compared eight di�erent kernels satisfying k0(0) = 0 and

k0(1) = 0. The cubic kernel, where k(x) = 1 � 3x2 + 2x3, has the same asymp-

totic distribution as the multiscale estimator of Aït-Sahalia et al. (2006) and Zhang

(2006a). The Tukey�Hanning kernel, where k(x) =
[1�cos�(1�x)2]

2
, seems to be the

best option in terms of e�ciency.

Barndor�-Nielsen et al. (2006a) also showed that the �ndings above are robust

to endogenous and/or dependent noise, and endogenously spaced observations, as

in tick data databases. They also provided Monte Carlo evidence in favor of their

estimators in �nite samples.

2.2.5 Filters

In the early days of modelling RV, another common alternative to attenuate the

e�ects of the microstructure noise was to pre-�lter the intraday returns. For example,

in Bollen and Inder (2002), an autoregressive (AR) �lter was used, while a moving

average (MA) �lter was considered in Ebens (1999), Maheu and McCurdy (2002),

and Andersen et al. (2001a). More recently, Hansen et al. (2008), showed that the

MA(1) structure considered in Ebens (1999) and Andersen et al. (2001a) is well

speci�ed when the market microstructure noise is IID. Moreover, when correcting

the estimator by a scaling factor, it becomes a consistent estimator of the integrated

variance (see Hansen et al., 2008 for further details).

Recently, Large (2006) proposed an interesting estimator of quadratic variation

which controls for microstructure e�ects when the best quotes change by jumping
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the minimum price tick. The estimator compares the number of alternations, where

quotes jump back to their previous price, with the number of other jumps. If the

alternations are uncorrelated, the estimator is consistent in a limit theory where

jumps are very frequent and small.

2.3 Reviews of spot volatility estimators

In this section we analyze the technical aspects of implementation of several spot

volatility estimators. First of all, we de�ne the notion of spot volatility. From the

formula (2.2.3), with the assumption that f�tg has continuous sample path, the spot

volatility can be obtained by taking the derivative of the integrated volatility with

respect to time path wisely

�2t = lim
h!0

[p; p]t+h � [p; p]t
h

= lim
h!0

1

h

� t+h

t

�2sds (2.3.1)

Our interest in this part is to estimate �t for some �xed point using the discretely

observed high frequency data over a de�ned time interval.

Always de�ning p(t) as in (2.2.3), we assume that,

a) E["i;t] = 0; suptE["2i;t] = C2
� <1 (C� =unknown positive constant)

b) For any arbitrary point set ftk� [0; T ]; 1 � k � ng of arbitrary size n,

the random variable f"i;tg are independent.
let us brie�y recall the theory of all spot volatility estimators employed in the

comparison. Given a discrete realization of the process Xt, namely given N 0 + 1

observations X(t0); X(t1); :::; X(N) in the interval [0; T ], we want to estimate the

spot volatility �2(t0k) at time t0k. We denoted by ftk; 0 � k � Ng the �nite set

of points in [0; T ] at which the noisy price process is observed. For simplicity in

calculus and notations, we suppose that the points are equally spaced and we set

tk = k4; 4 = T=N . And we set

t0k = tkD; 1 � k � N 0
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where N 0; D are natural numbers satisfying the relation N 0D = N . Where for

each observation at time t0k, we divide this interval into D steps, and N+1 represents

the amount of daily data (without in�ll).

The �rst model we are going to deal with is the normalized squared returns. This

estimator is obtained by setting

~�2i (t
0
k) =

(X(t0k)�X(t0k�1))
2

40
where 40 =

T

N

Unfortunately, this estimator is very noisy, because it uses low frequency data.

A more robust estimator of the Realized Volatility type has been analized by

several authors, among others Comte and Renault (1998). It is given by

~�2CR(t
0
k) =

1

m

mX
j=1

(X(t0k�m=2+j)�X(t0k�m=2+j�1))
2

40
where 40 =

T

N
(2.3.2)

Comte and Renault (1998), Mykland and Zhang (2008), for instance study its

asymptotic properties. That estimator is an average of m squared returns around t0k.

The larger m, the smoother the estimates. In the presence of microstructure e�ects

due to tick-by-tick quotes, data must be sampled at a lower frequency in order to

�lter out the high frequency noise component.

A general class of nonparametric spot volatility �lters is based on a kernel weighted

measure of the integrated volatility, see for example D.Kristensen (2006), Fan and

Jiang (2008), Mattiusi and Renò (2010) and can be seen as a continuous-time

weighted moving average of the instantaneous volatility. Given a kernel K : R! R

normalized to
�
R
K(z)dz = 1 and a bandwidth h > 1, de�ne Kh(z) =

1
h
K( z

h
). Then,

based on standard results for kernel estimators, a natural spot volatility estimator is

�̂2(t) = lim
h!0

NX
i=0

Kh(ti�1 � t)[X(ti)�X(ti�1)]
2:

This is Nadaraya-Watson type kernel estimator and it is simply the limit for shrink-
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ing bandwidth sequences of a kernel weighted average of the squared increments of

data or, in other words, a kernel regression estimator in the time domain. By an

appropriate choice of the kernel, it can potentially deal with the presence of market

microstructure e�ects. Consistency and both pointwise and global asymptotic dis-

tributions are established in Fan and Wang (2008) and D.Kristensen (2006). This

broad class of estimators includes as a special case the standard realized volatility

type estimators and the rolling window estimators proposed by Andreou and Ghysels

(2002) and Foster and Nelson (1996). In Andreou and Ghysels (2002) the k-day spot

volatility estimator is de�ned as a one-sided moving k-day average of one-day spot

volatility given by a rescaled sum of squared intraday returns. This estimator looks

very close to the real-time scheme which will be resumed in the next paragraph. In

particular, in our analysis we consider the following schemes from the class of kernel

estimators: the one-sided exponential �lter

~�2E(t
0
k) = (1� �)

iX
j=1

�j[X(t0k�j+1)�X(t0k�j)]
2 (2.3.3)

where � is a smoothing parameter, which can be set equal to 0.94 for daily data

according to J.P. Morgan standard: the one-sided rolling daily window volatility,

de�ned as

~�2W (t0k) =

nLX
j=1

!j[X(t0k�j+1)�X(t0k�j)]
2 (2.3.4)

where nL is the lag length of the rolling window and wj = exp(��j). The pa-

rameter � can be optimized to minimize the asymptotic measurement error variance

as explained in Foster and Nelson (1996). These two volatility measures are then

normalized by the sampling interval in order to obtain a measure of volatility per

unit time.

The so called real-time estimator of the spot volatility reconstructs a volatility

which can work in a real-time manner, namely an estimator which can estimate

the spot volatility at each time almost immediately on receiving the observed data

around that time. Given the observed log-price process X(t), a �rst regularization is
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performed to obtain a smoothed process �X(t) which is then used to recover the spot

volatility. The scheme proposed by Ogawa and Sanfelici (2010) is the following:

As above, we denoted by ftk; 0 � k � Ng the �nite set of points in [0; T ] at

which the noisy price process is observed. For simplicity in calculus and notations

we suppose that the points are equally spaced and we set tk = k4; 4 = T=N . Let

ft0k; 1 � k � N 0g � tk; 1 � k � Ng, be the subset of estimation points such that

t0k = tkD; 1 � k � N 0

whereN 0; D are natural numbers satisfying the relationN 0D = N . The remaining

data X(ti) for ti =2 ft0k; 1 � k � N 0g will be used to construct the regularized data
�X(t), which are de�ned in the following way

�X(t0k) =
1

M

MX
i=1

X(tkD�i+1); 1 � k � N 0 (2.3.5)

where M is an integer not necessarily equal to D. The regularization of other

processes p(t); "i; i at t = t0k = tkD is de�ned in the same way. Thus we have again

the relation
�X(t0k) = �p(t0k) + �"(t0k):

It can be showed that the family f�"(t0k)g is almost orthogonal in the sense that

E[�"(t0k)�"(t
0
l)] = 0 for jk � lj > � :=

M

D

Now taking the increment over [t0(k�1); t
0
k] of each member in the relation above,

we have

40
k
�X = 40

k�p+40
k�"

where 40
k
�Y = �Y (t0k)� �Y (t0k) =

�Y (tkD)� �Y (t(k�1)D); (Y = X; p; "):

Given all that assumptions, the estimator is de�ned in the following way

For each t0k (1 � k � N) and set
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~�2OS(t
0
k) =

G(�)�1

L

LX
i=1

(40
k+l

�X)2

40
; (2.3.6)

where, 40 = T=N 0 = D4 and G(�) = 3MD�D2+1
3M2 = (3��1)D2+1

3�2D2 . And the normal-

izing constant is G(�) = 1
DM2

DP
i;j=1

fM � ji� jjg;
In Ogawa and Sanfelici (2010), the proof of an explicit L1 bound for the estimate

over which, suitable choice ofM and L yields the consistency of the estimator (2.3.3)

is proposed.

Consider, in a �ltered probability space, the process (2.2.3), where it is assumed

that E[
� 2�

0
(�(t))2 <1; E[

� 2�

0
(�(t))4 <1 so that a single solution of the stochastic

di�erential equation (2.2.3) exists in the interval [0; 2�], andWt a standard Brownian

motion. De�ne the Fourier coe�cients of dr and �2 as follows:

a0(dr) =
1

2�

� 2�

0

dr; a0(�
2) =

1

2�

� 2�

0

�2(t)dt

ak(dr) =
1

�

� 2�

0

cos(kt)dr; ak(�
2) =

1

�

� 2�

0

cos(kt)�2(t)dt

ak(dr) =
1

�

� 2�

0

sin(kt)dr; ak(�
2) =

1

�

� 2�

0

sin(kt)�2(t)dt

in Malliavin and Mancino (2002) it is shown that, given an integer n0 > 0; we

have

a0(�
2) = lim

N!1

�

N + 1 + n0

NX
k=n0

1

2
(a2k(dr) + b2k(dr)) (2.3.7)

aq(�
2) = lim

N!1

�

N + 1 + n0

NX
k=n0

1

2
(ak(dr)ak+q(dr) + bk(dr)bk+q(dr)) (2.3.8)
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bq(�
2) = lim

N!1

�

N + 1 + n0

NX
k=n0

1

2
(ak(dr)ak+q(dr) + bk(dr)bk+q(dr)) (2.3.9)

almost surely. Then, the spot volatility can be estimated using its Fourier coe�cient

as

~�(t) = lim
M!1

MX
k=0

�
ak(�

2)cos(kt) + bk(�
2)sin(kt)

�
(2.3.10)

When actually implementing the estimator, it is suggest to add a linear trend on

the observed process Xt such that we get X(2�) = X(0); which does not have an

in�uence on the volatility estimate. Moeover, we set n0 = 1 and we �lter progressively

high modes by using the following approximation of the volatility

~�F (t) = lim
M!1

MX
k=0

'F (�k)
�
ak(�

2)cos(kt) + bk(�
2)sin(kt)

�
(2.3.11)

where '(x) = sin2(x)=x2 is the Fejer kernel and '(0) = 1. � is an a parameter

adapted to the scale which is expected to give an appropriate resolution of the volatil-

ity and to �lter out high frequency noise modes. When choosing �, it is convenient

to have � � 1
M
, the larger �, the smoother and less detailed the estimated volatility.

After selecting a suitable value of the cutting frequency NF , it is convenient to use

the maximum M that can be computed, namely M = NF � n0, and successively

tune � to �lter high frequencies. Finally, we remark that according to well-known

di�raction phenomena of Fourier series near the boundary of the time window this

estimator performs badly at the boundaries.



Chapter 3

Nonparametric estimation of the

di�usion coe�cient of local volatility

models

In this chapter we review the concepts of kernel estimator and local time. We intro-

duce the general framework for deriving nonparametric estimation of the di�usion

coe�cient. Using spot volatility (2.3.2, 2.3.3, 2.3.4 and 2.3.6), we construct non-

parametric studied estimators and prove that they are consistent and asymptotically

normally distributed.

3.1 Kernel density estimator

3.1.1 De�nition and construction

We suppose that X1; X2; :::; Xn are independent identically distributed and drawn

from a (unknown) density function f(x), of which we want to have an estimate.

We remember that the probability density f , of a random variable X is the

42
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derivative of the cumulative distribution function F (if it exists). Then we can write

f(x) = lim
h!0

F (x+ h)� F (x� h)

2h

= lim
h!0

Pfx� h < X � x+ hg
2h

an estimator of f(x) is then

f̂(x) =
1

2h

#fi : x� h < Xi � x+ hg
n

=
1

2hn

nX
i=1

Ifx�h<Xi�x+hg

=
1

2hn

nX
i=1

I
f�1<

x�Xi
h

�1g

where IA is the indicator function, taking the value 1 if A is true and 0 elsewhere.

The fraction 1
2nh

in front of the sum normalizes bf(x) making its integral equal to

one. We can prove that, if h! 0; fast enough, bf ! f as n!1.

We can express the estimator more transparently, de�ning the weight function w

by

w(x) =

8<:1
2
if jxj < 1

0 otherwise
(3.1.1)

then it is easy to see that the naive estimator can be written as

bf(x) = 1

2n

nX
i=1

1

h
w

�
x�Xi

h

�

The estimator constructed above presents many �aws (has jumps, non derivability

at all points etc...), We can generalize the naive estimator to resolve some di�culties

stated above.

We can replace the weight function w by a general kernel function K which
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satis�es the condition � 1

�1

K(x)dx = 1 (3.1.2)

Usually, but not always, we can suppose that K is a symmetric probability den-

sity function, the normal density for instance or the weight function w used in the

construction of the �rst estimator. Similar to the de�nition of the naive estimator,

the kernel estimator with kernel K is de�ned by

bf(x) = 1

nh

nX
i=1

K

�
x�Xi

h

�
(3.1.3)

where h is the window width, also called the smoothing parameter or bandwidth

by some authors.

In each observationXi, we place a �bump�, the kernel estimator resulting is merely

the sum of the �bumps�.

The kernel K determines the form of the �bumps�, and the window h determines

the width of the �bumps� as precised above.

We can easily see that the kernel estimator

bf(x) = 1

nh

nX
i=1

K

�
x�Xi

h

�

has the following properties

� If K is a probability density, the estimator bf is a probability density as well.

� bf has the same properties of continuity and di�erentiability as K.

1. If K is continue, bf will be also a continuous function

2. If K is di�erentiable, bf will be also a di�erentiable function

3. If K can take negative values, then bf should take negative values as well
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3.1.2 Measure of discrepancy: mean square error and mean

integrated square error

Considering the kernel estimator

bf(x) = 1

n

nX
i=1

1

h
K

�
x�Xi

h

�
=

1

n

nX
i=1

Kh (x�Xi)

where we introduce the notation

Kh(:) =
1

h
K
� :
h

�
for a transformed version of K.

To calculate the bias of the kernel estimator, we �rst observe that

Ef bf(x)g = E fKh(x�X)g = �
Kh(x� y)f(y)dy.

We recall that the convolution between two functions is de�ned as

(f � g)(x) =
�
R

f(x� y)g(y)dy:

Then, we have

Ef bf(x)g � f(x) = (Kh � f)(x)| {z }
smooth version of f

� f(x)

we calculate the variance as follow

V arf bf(x)g = Eff̂ 2(x)g � [Ef bf(x)g]2 = 1

n
f(K2

h � f)(x)� (Kh � f)2(x)g

When considering estimation at single point, a natural measure of the discrepancy

is the mean square error (MSE), de�ned by

MSEx( bf) = Ef bf(x)� f(x)g2 (3.1.4)

by standard properties of mean and variance, we can express it as
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MSEx( bf) = fE bf(x)� f(x)g2 + V ar bf(x) = V ar bf(x) + [Bias( bf(x))]2 (3.1.5)

The most general way of placing a measure on the global accuracy of bf as an

estimator of f is the mean integrated square error (MISE) de�ned as

MISE( bf) = �
MSE( bf): (3.1.6)

since

�
(K2

h�f)(x)dx =

�
1

h2

��
K2

�
x� y

h

�
f(y)dy

�
dx =

1

h

� �
K2(u)ff(x�uh)dxgdu; with u =

x� y

h

By substitution in (3.1.5) we �nd that

MISE( bf) = 1

nh

�
K2(u)du+

�
1� 1

n

��
(Kh�f)2(x)dx�2

�
(Kh�f)(x)f(x)dx+

�
f 2(x)dx:

3.1.3 Approximate properties of bias and variance

We suppose that the kernel K is a symmetric function satisfying the following prop-

erties

K � 0

�
K(t)dt = 1;

�
tK(t)dt = 0; and 0 <

�
t2K(t)dt <1 (3.1.7)

and that the unknown density f has continuous derivatives of all orders required.

An asymptotic approximation of the expectation of the estimator bf(x) is given
by

Ef bf(x)g = �
Kh(x� y)f(y)dy

=

�
K(u)f(x� uh)dy; with u =

x� y

h
du = �1

h
dy

=

�
K(u)[f(x)� f 0(x)uh+

1

2
f 00(x)u2h2 + :::]du by



CHAPTER 3. NONPARAMETRIC ESTIMATION OF THE DIFFUSION COEFFICIENT OF LOCAL VOLATILITYMODELS47

by Taylor expansion

= f(x)

�
K(u)du� f 0(x)h

�
K(u)udu+

1

2
f 00(x)h2

�
K(u)u2du+ o(h2)

the bias can be obtained as

Ef bf(x)g � f(x) =
1

2
f 00h2

�
K(u)u2du+ o(h2) (3.1.8)

Given that

V arf bf(x)g = 1

n
fEK2

h(x�X)� [EKh(x�X)]2g

EK2
h(x�X) = 1

h2

�
K2

�
x�y
h

�
f(y)dy

= 1
h

�
K2(u)f(x� uh)du; with u = x�y

h

= 1
h

�
K2(u)[f(x)� f 0(x)hu)du+ :::]du; by Taylor expansion

we �nally �nd that V arf bf(x)g = 1
nh
f(x)

�
K2(u)du+ o( 1

nh
)

To sum up, we have therefore established that

Biasf bf(x)g = 1

2
f 00(x)�h2 + o(h2) where � =

�
K(u)u2du

V arf bf(x)g = 1

nh
f(x)R(K) + o(

1

nh
) where R(K) =

�
K2(u)du (3.1.9)

If h = hn ! 0 as n!1; then Biasf bf(x)g ! 0 as n!1
If h = hn ! 0 as n!1; then V arf bf(x)g ! 0 as n!1
We see that as in many branches of statistics, there is a trade-o� between the

bias and the variance terms; the bias can be reduced at the expense of increasing the

variance, and vice versa by adjusting the amount of smoothing.
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3.1.4 The ideal window width and kernel

From (3.2.8) we have the following asymptotic approximation for MSE and MISE

MSEf bfn(x)g = 1
4
f 00(x)�2h4 + 1

nh
f(x)R(K) + o(h4 + 1

nh
)

MISEf bfn(x)g = 1
4
�2h4

� ff 00(x)g2dx+ 1
nh
R(K) + o(h4 + 1

nh
)

under appropriate integrability conditions of f and his derivative

We denote the asymptotic approximation of the MSE by

AMSEf bfn(x)g = 1

4
f 00(x)�2h4 +

1

nh
f(x)R(K) (3.1.10)

and the asymptotic approximation of the MISE by

AMISEf bfn(x)g = 1

4
�2h4

�
ff 00(x)g2dx+

1

nh
R(K) (3.1.11)

The ideal value of h is obtained by minimizing the approximate mean integrated

square error, and �nally we obtain

hopt = ��2=5
��

K(t)dt

�1=5��
f 00(x)2dx

��1=5
n�1=5 (3.1.12)

Substituting the value of hopt from (3.1.11) inside the value of the approximate

formula (3.1.10) for the mean integrated square error shows that, if h is chosen

optimally, then the approximate value of the mean integrated square error will be

5

4
C(K)

��
f 00(x)2dx

�1=5

n�4=5 (3.1.13)

where the constant C(K) is given by

C(K) = �2=5
��

K(t)2dt

�4=5

(3.1.14)

The constant C(K) depends on the choice of the kernel and on the second deriva-

tive of the target density function. R(f 00) =
�
f 00(x)2dx denotes the curvature. Thus,
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densities with small curvature will ask for a large bandwidth (more smoothing), con-

versely, densities with large curvature will ask for a small bandwidth. The criterion

(3.1.11) is infeasible. However, several techniques exist to estimate R(f 00). The sim-

plest is based on the assumption of a gaussian kernel K and that f is normal density

con variance �2.

�
f 00(x)2dx =

�
�00(x)2dx =

3

8
��1=2��5 (3.1.15)

where � is the standard deviation of a family of variables containing f and � is

a standard normal density. Then the window width obtained by substitution gives

the value

hopt = 1; 06�n�1=5 (3.1.16)

A quick way of estimating the smoothing parameter, therefore would be to esti-

mate � from the data and then to substitute the estimate into (3.2.15). Either the

usual sample standard deviation or a more robust estimator of � could be used.

3.2 Local time

In what follows we introduce some preliminary results regarding the local or sojourn

time of a continuous semimartingale (SMG). These results will be useful in the

development of our analysis (Revuz and Yor (1998) is a standard reference). The

concept of continuous semimartingale was presented thoroughly in the �rst chapter.

In this section we will deal with the stochastic di�erential equation of the form

dXt = �(Xt)dt+ �(Xt)dWt (3.2.1)

with the initial condition X0 = X, where fWt : t � 0g is a standard Brownian

motion de�ned on the �ltered probability space (
;=W ; (FW
t )t2R+;P )

Stochastic di�erential equations like (3.2.1) are known to have solutions that are

SMGs since X +
� t

0
�(Xs)ds is a continuous adapted process of �nite variation and
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� t

0
�(Xs)dBs is a continuous local martingale. Hence, our theory comes within the

ambit of SMG analysis.

The local time of a continuous SMG Mt is de�ned as follows:

Lemma 38. (The Tanaka Formula) For any real number a, there exists a non-

decreasing continuous process LM(:; a) called the local time of Mt at a, such that

jMt � aj = jM0 � aj+
� t

0

sgn(Ms � a)dMs + LM(t; a); (3.2.2)

(Mt � a)+ = (M0 � a)+ +

� t

0

1fMs > agdMs +
1

2
LM(t; a); (3.2.3)

(Mt � a)� = (M0 � a)� +

� t

0

1fMs � agdMs +
1

2
LM(t; a); (3.2.4)

In particular, jMt � aj ; (Mt � a)+ ;(Mt � a)+ are SMGs.

Lemma 39. (Continuity of SMG Local Time) For any continuous SMG Mt, there

exists a version of the local time such that the map (t; a) 7! LM(t; a) is a.s. contin-

uous in t and càdlàg in a.

Lemma 40. (The Occupation Time Formula) Let Mt be a continuous SMG with

quadratic variation process [Mt] and let La be the local time at a. Then,

� t

0

f(Ms; s)d[M ]s =

� 1

�1

da

� t

0

f(a; s)dLM(s; a) (3.2.5)

for every positive Borel measurable function f . If f is homogeneous, then the

expression simpli�es to

� t

0

f(Ms; s)d[M ]s =

� 1

�1

f(a)LM(t; a)da (3.2.6)

.

Lemma 41. If Mt is a continuous SMG then, almost surely
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LM(t; a) = lim
"!0

1

"

� t

0

1[a;a+"[(Ms)d[M ]s (3.2.7)

Lemma 42. If Mt is a continuous local martingale then, almost surely

LM(t; a) = lim
"!0

1

2"

� t

0

1]a�";a+"[(Ms)d[M ]s (3.2.8)

The process LM(t; a) is called the local time of Mt at the point a over the time

interval [0; t].

It is measured in units of the quadratic variation process and gives the amount

of time that the process spends in the vicinity of a. The �chronological local time�

(terminology from Phillips and Park (1998)) is a standardized version of the conven-

tional local time that is de�ned in terms of pure time units. It can be easily derived

in the Brownian motion case. From (3.2.8), the local time of a standard Brownian

motion Wt is

LW (t; a) = lim
"!0

1

2"

� t

0

1(jWs�aj<")ds a:s: 8a; t: (3.2.9)

Now, consider the Brownian motion Bt = �Wt with local variance �2. We can

write, as in Phillips and Park (1998),

LB(t; a) = lim
"!0

1

2"

� t

0

1(jBs�aj<")�
2ds = �LW (t;

a

�
) a:s: 8a; t: (3.2.10)

Since the quadratic variation of Brownian motion is deterministic, the chronolog-

ical local time can be obtained as a scaled version of the conventional sojourn time

as

LB(t; a) = lim
"!0

1

2"

� t

0

1(jBs�aj<")ds = ��2LB(t; a) a:s:8a; t: (3.2.11)

Equation (3.2.11) clari�es the sense in which LB(t; a) measures the amount of

time (out of t) that the process spends in the neighborhood of a generic spatial point

a. It turns out that a similar expression can be de�ned for more general processes
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such as those driven by stochastic di�erential equations like (3.2.1). In this case, the

measure d[X]s is random and equal to �2(Xs)ds. Hence, given the limit operation,

a natural way to de�ne the chronological local time is by

LX(t; a) =
1

�2(a)
lim
"!0

1

"

� t

0

1[a;a+"[(Xs)�
2(Xs)ds =

1

�2(a)
LX(t; a) a:s:8a; t: (3.2.12)

This is the notion of local time that we will use extensively in what follows. It

appears in other recent work on the nonparametric treatment of di�usion processes

as Florens-Zmirou (1993), where it is sometimes referred to simply as �local time�.

We can estimate the local time of a di�usion via the following approximation:

Ln
M(t; a) =

T

nhn

[nt
T
]X

i=1

K

�
Xi � a

hn

�
(3.2.13)

where [x] is the integer part of x. We have indeed:

Proposition 43. (Florens-Zmirou, 1993) If as n ! 1 we have nh4n ! 0, then

Ln
M(t; a)! LM(t; a) in the L2 sense. The convergence is almost sure if logn

nh2n
! 0.

Proof. This can be reach following the Proposition 3 in Florens-Zmirou (1993).

3.3 The estimation of the di�usion coe�cient

In this section we will concentrate on the models of the kind (3.2.1).

By constructing the nonparametric estimator of the di�usion process, we assume

that, the process Xt; solution of the equation (3.2.1) is observed at ft0 = 0 <

t1 < ::: < tn = Tg in the time interval [0; T ], with T > 0. Subsequently, we

let fXt = X4n ; X24n ; :::; Xn4ng be n equispaced observations at discrete points

ft0 = 4n; t2 = 24n; :::; tn = n4ng, where 4n = T
n
. It is possible to derive the same

construction per nonequispaced data. Given the above conditions, the theory of the

estimation of coe�cient di�usion is built on the Nadayara-Watson estimator of the
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kind:

�̂2(x) =

Pn
i=1K(x�X̂i

h
) ~�i

2Pn
i=1K(x�X̂i

h
)

(3.3.1)

where ~�i is a consitent estimate of the spot volatility at time ti and h is a band-

width parameter.

The following conditions will be used in the study of (3.2.1)

Assumption 4

1. X0 2 L2(
) is independent of Wt; t 2 [0; T ] and measurable with respect to F0

2. �(x) and �(x) are de�ned on a compact interval I. �(x) is once continuously

di�erentiable, while �(x) is twice continuously di�erentiable.

3. A constant K exists such that 0 < �(x) � K and j�(x)j � K.

4. (Feller condition for non-explosion). Given:

S(�) =

� �

0

e
� y
0 �

2�(x)
�(x)

dxdy (3.3.2)

V (�) =

� �

0

S 0(�)

� y

0

2

S 0(x)�2(x)
dx (3.3.3)

then V (�) diverges at the boundaries of I.

The �rst fully nonparametric estimator of the di�usion coe�cient was proposed

by Florens-Zmirou (1993). Her estimator is obtained by setting ~�2i =
n
T
(X̂i+1 � X̂i)

2

in (3.3.1) thus implies

�̂2FZ(x) =
n
Pn�1

i=1 K(x�X̂i

h
)(Xi+1 �Xi)

2

T
Pn�1

i=1 K(x�X̂i

h
)

(3.3.4)

Florens-Zmirou (1993) uses naive kernel estimator; however the extention to a

generic kernel was proposed by Jiang and Knight (1997)

The di�usion coe�cient proposed in Florens-Zmirou (1993); Santon(1997); Jiang

and Knight (1997) is constructed on the following quantity:
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V n(a) =
1

Thn

n�1X
i=0

K

�
Xi � a

hn

�
(Xi+1 �Xi)

2 (3.3.5)

Proposition 44. (Florens-Zmirou, 1993) If nh4n ! 0 as n ! 1; then V n(x) con-

verges to �2(x)LT (x) in the L2sense.

Thus dividing V n(x) by Ln
T (x), we get a consistent estimator of �2(x) given in

(3.3.4). Results are also found about the asymptotic distribution if, additionally,

nh3n ! 0.

In our analysis, relying on the result of the previous Chapter, we want to substi-

tute the quantity (3.3.5) with the following:

W n(x) =
1

Tnhn

n�1X
i=0

K

�
Xi � x

hn

�
~�2(ti) (3.3.6)

where ~�2(ti) is one of the spot volatility (2.3.2, 2.3.3, 2.3.4 and 2.3.6) computed

on the observed trajectory of Xt:

We then de�ne the estimator:

Sn(x) =

nP
i=1

K
�
Xi�x
hn

�
~�2(ti)

T
nP
i=1

K
�
Xi�x
hn

� (3.3.7)

We now prove that Sn(x) is a consistent estimator of �2(x).

Theorem 45. If nh4n ! 0 as n ! 1; then Sn(x) computed with ~�2CR;~�
2
E; ~�

2
W and

~�2OS are consistent estimators of �2(x) in the L2 sense.

Proof. We �rst suppose that �(x) = 0 in (3.2.1). For every w 2 
; we consider

the solution Xt(w) of the previous equation and de�ne the process Zt(w) which can

be written by

Zt(w) = �(Xt)dW
0

t (3.3.8)

whereW
0

t is a standard Brownian motion in an auxiliary probability space (

0

; (F 0

t)0�t�T ; P
0

)

and �(Xt(w)) is the realization of �(Xt). We suppose that the solution of (3.2.1)
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exists and is unique. Then is plausible to construct random variables in 
 by taking

expectations in 

0

. We denote by E
0

the expected value in 

0

and by E the expected

value in 
. We can write the following relation
1
�t
E
0

[Zi+1 � Zi]
2 = 1

4t

� ti+1

ti
�2(Xt(!)dt)

2 and we set Zi = Zti(w)

= 1
4t

lim
mi!1

miP
j=0

�
Zi+

mi
2
+j � Zi+

mi
2
+j�1

�2
= 1

4t

miP
j=0

�
Zi+

mi
2
+j � Zi+

mi
2
+j�1

�2
+ 1

4t

1P
j=mi

�
Zi+

mi
2
+j � Zi+

mi
2
+j�1

�2
= ~�2mi

(Xti(w)) +Rmi
(i;4t) (3.3.9)

where the �rst part of the sum is the estimator of the spot volatility and the other

is the remainder which tends to 0 as mi !1 and 4t! 0 such that mi4t! 0

Now it is possible to prove that, almost surely

E[E
0

[(Zt(w)� Zs(w))
2]=Fs] = E[(Xt �Xs)

2=Fs]; (3.3.10)

whereX is the solution of the previous equation and both equalities yield
� t

s
E[�2(Xu)=Fs]du

and for Cauchy-Schwartz inequality, we get almost surely:

E[E
02[(Zt(w)� Zs(w))

2]=Fs] � E[(Xt �Xs)
4=Fs]; (3.3.11)

Rede�ning (3.3.6) as:

Un
t (x) =

T
nh

n�1P
i=0

K
�
Xi�x
hn

�
�2CR(ti)

where �2CR is computed as in Comte and Renault on the observed trajectory of

Xt.

Now let us denote the L2(
) norm of X by kXk2 = E[X2]: We then use almost

sure identity of the previous relation and get:

kUn
t (x)� �2(x)Ln

t (x)k =




 T
hn

n�1P
i=0

K
�
Xi�x
hn

�
f 1
4t
E
0

[(Zw
i+1 � Zw

i )
2]�Rmi

(i;4t)g � �2(x)Ln
t (x)






�




 T
nhn

n�1P
i=0

K
�
Xi�x
hn

�
1
4t
E
0

[(Zw
i+1 � Zw

i )
2]� �2(x)Ln

t (x)





+



 T
nhn

n�1P
i=0

K
�
Xi�x
hn

�
Rmi

(i;4t)






�




 T
hn

n�1P
i=0

K
�
Xi�x
hn

�
(Xi+1 �Xi)

2 � �2(x)Ln
t (x)





+



 T
nhn

n�1P
i=0

K
�
Xi�x
hn

�
Rmi

(i;4t)
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the �rst term tends to 0 as nh4n ! 0 and n!1 and the second term tends to 0

as nhn !1 and mi

n
! 0:

If �(t) 6= 0; then we can write :

E[E
0

[(Zt � Zs)
2]] = E[(Xt �Xs)

2]� E
��� t

s
�(Xu)du

�2�
and the second term on

the right hand side vanish as s! t i.e n!1
We can derive the same results for the one side Exponential estimator and the

Rolling Estimator

Noting that; ~�2E(t
0
k) = (1 � �)

Pi
j=1 �

j[X(t0k�j+1) � X(t0k�j)]
2 � �2CR , because

0 � � � 1 and ~�2W (t0k) =
PnL

j=1 !j[X(t0k�j+1)�X(t0k�j)]
2 � �2CR and !j = exp(��j)

the results follow immediately.

We can use the same decomposition introduced above to prove the consistency

of the estimator of Ogawa and Sanfelici .

1
4t
E
0

[Zi+1�Zi]
2 = 1

4t

� ti+1

ti
�2(Xt(!)dt = lim

L+1

1
4t

LP
l=1

(40

k+l
�X)2 = RVOS+Rmi

(i;4t)

where 4t = T
n
the step between two observations

and noting that lim
4t7�!0

Rmi
(i;4t) = 0 almost surely in 
. Following the previous

demostratiom step by step the result follows.

Lemma 46. (Florens-Zmirou) If nh3 !1; then
[nt]P
i=1

E

�
n
hn

�
K
�
Xi�1�x

hn

�
[Xi �Xi�1]

2 � �2(x)=n
�2
j Fi�1

�
! �4(x)Lt(x)

where the above convergence is in probability

The proof is found in Florens-Zmirou (1993) lemma 2(b)

Lemma 47. Let g(x) : R ! R be a continuously di�erentiable bounded function,

with bounded �rst derivative. Let nh3n ! 0 when n!1:Consider :

Gt(x) =
1p
nhn

[nt=T ]X
i=1

K

�
Xi � x

hn

�
[g(Xi)� g(x)] (3.3.12)

then, as n!1; Gt(x)! 0 in L1 sense, and then in probability.

Proof: We have the known relationship
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Proof.

E[jGt(x)j] � E

24 1p
nhn

[nt=T ]X
i=1

K

�
Xi � x

hn

�
jg(Xi)� g(x)j

35 (3.3.13)

dividing the sum in terms such that jXi � xj � n�
1
3 and their complementary

jXi � xj > n�
1
3 . Then:

E[jGt(x)j] �

E

264 1p
nhn

sup
jXi�xj�n

�
1
3

jg(Xi)� g(x)j
X

jXi�xj�n
�
1
3

K

�
Xi � x

hn

�
+

1p
nhn

X
jXi�xj>n

�
1
3

K

�
Xi � x

hn

�
jg(Xi)� g(x)j

375

� E

264pnhn sup
jXi�xj�n

�
1
3

jg(Xi)� g(x)j
X

jXi�xj�n
�
1
3

1

nhn
K

�
Xi � x

hn

�375+

+E

264 1p
nhn

sup
jXi�xj>n

�
1
3

jg(Xi)� g(x)j
X

jXi�xj>n
�
1
3

K

�
Xi � x

hn

�375 (3.3.14)

Now, by Taylor's rule, and given the boundedness of the �rst derivative of g(:),

we get that sup
jXi�xj�n

�
1
3

jg(Xi)� g(x)j = o(n�
1
3 ). Then, using Proposition 43, we have

that the �rst term goes as (nh3n)
1
6 , then it goes to zero as n!1. The second term

goes to zero given the boundedness of g, the fact that the argument of the kernel is

greater than 1

n
1
3 hn

= 1�
nh

1
3

�3 , and the fact that the kernel goes to zero faster than

inverse polynomials when its argument goes to in�nity, as in this case.

Theorem 48. If nh3n ! 0 then
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p
nhn

�
Sn(x)

�2(x)
� 1

�
L! 1p

LT (x)
N (0; 1); (3.3.15)

where the above convergence is in law, and N (0; 1) is a standard normal variable.

Where Sn(x) refers to all nonparametric estimators

Proof of theorem : Consider the discrete �ltration Fi = Fti ; i = 0; :::; n: De�ne

the following term

�i =

r
T

nhn
K

�
Xi�1 � x

hn

��
~�2CR(Xi�1)� �2(x)

�
(3.3.16)

since ~�2(:) is bounded, �i is bounded, and it is adapted to Fi�1. We want now

to verify the conditions of Lemma 37. In the limit n!1, we have the following:

� 1
[nt=T ]P
i=1

E [�i j Fi�1] =
[nt=T ]P
i=1

�i which yields the following

q
T
nhn

K
�
Xi�1�x

hn

�
[~�2(Xi�1)� �2(x)] +

q
T
nhn

K
�
Xi�1�x

hn

�
[~�2CR(Xi�1)� �2(x)]

The �rst term tends to zero in probability, given Lemma 47, The second term

tends to zero, given Proposition 43 and because the approximation of the �2CR which

is bounded.

� 2 We have to prove that
[nt=T ]P
i=1

E [�2
i j Fi�1]! �4(x)Lt((x).

Using lemma 46, this is equivalent to prove that:

Ht :=
[nt=T ]P
i=1

E

�
T
nhn

n
K
�
Xi�x
hn

� �
~�2CR(x)� n

T
(Xi �Xi�1)

2
�o2

j Fi�1

�
! 0

We can use the derivation (3.3.9) and use the same reasoning the proof of the

consistency, together with inequality (3.3.11), to get

Ht =
[nt=T ]P
i=1

E

�
T
nhn

n
K
�
Xi�x
hn

� �
n
T
E 0[(Zw

i � Zw
i�1)

2]�Rmi
(i;4t)� �2(x)

�o2

j Fi�1

�
�

[nt=T ]P
i=1

E

�
hn

n
K
�
Xi�x
hn

�
[(Xi �Xi�1)

2]�R(i;4t)� �2(x)]
o2

j Fi�1

�
From this inequality, Proposition 43, and the remainder term of equation (3.3.9),

we get the result.
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� 3 We have to prove conditional Lindeberg condition. We have:

E
���E ��2

i Ifj�ij>"g j Fi�1

���� = X
j�ij>"

�2
i (3.3.17)

Now, the sum (3.3.17) is bounded by �4(x)Lt(x); moreover, we can rewrite j�ij >
" as:

K

�
Xi � x

hn

� ���2(Xi)� �2(x)
�� > "

p
nhn=T (3.3.18)

The left-hand.side of equation (3.3.18) is bounded, thus as n ! 1 we have

"
p
nhn !1 and the sum (3.3.17) vanishes in probability.

Thus, we ful�ll the assumptions of lemma 37, then if we de�ne Y n
t (x) as:

Y n
t (x) =

[nt=T ]X
i=1

�i(x) (3.3.19)

then we have that Y n
t (x) converges in law to the continuous martingale Mt with

quadratic variation [M;M ]t = �4(x)Lt(x). We then set Mt = B(�4(x)Lt(x), where

B(t) is a standard Brownian motion. Now consider:

Zn
t (x) =

[nt=T ]X
i=1

(Wti �Wti�1) (3.3.20)

whereWt is the standard Brownian motion in (3.2.1). It is clear that Zn
t converges

in law to the standard Brownian motion Wt. Moreover we have:

[nt=T ]X
i=1

E
�
�i(Wti �Wti�1) j Fi�1

�
= 0 (3.3.21)

By equation (3.3.21), we get that Mt and Wt are orthogonal. We can also write

B(t) = MT (t), where T (t) = infs(
s

�4(x)Ls(x)
). Then, by Knight's Theorem (Knight,

1970), we get that B(t) and Wt are independent Brownian motions. Then B(t) and

Lt(x) are independent, since the �ltration generated byXt is included in the �ltration

generated by Wt. We then have that Y n
t (x)!

p
Lt(x)�

2(x)N (0; 1) where N (0; 1) is
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a standard normal random variable independent of Lt(x). SinceLn
t (x) converges in

probability to Lt(x), we have the desired result.

The asymptotic properties for other estimators are obtained in the same way,

with the appropriate modi�cations

Mancini and Renò (2006) introduce the jump di�usion model. Following the clas-

sical framework, they stand always in a �ltered probability space (
; (Ft)t2[0;T ];F ; P );
which satis�es the usual conditions, where W is a standard Brownian motion and J

is a pure jump levy process or a doubly stochastic Poisson process with �nite activity.

Assuming that (Xt)t2[0;T ] is a real process such that X0 2 R and

dXt = �(Xt)dt+ �(Xt)dWt + dJt; t 2]0; T ] (3.3.22)

and when J is a double stochastic process, either the non-parametric estimator

function of the di�usion function �(x), or the �(x) and �(x) counterpart can be

obtained. So that in our setting, the volatility can be estimated as:

�̂2n(X) :=

nP
i=1

K
�
X�Xi

h

�
(4iX)2 If(4iX)2�#(�)g

nP
i=1

K
�
X�Xi

h

�
�

(3.3.23)

where � is is the step between two consecutive observations and � ! 0 and #(�)

is a threshlod function so that
�ln 1

�

#(�)
then to zero. Futhermore, the estimated function

satis�es p
nh(�̂2n(X)� �2(X))

st!MN

�
0; 2

�6(X)L��T (X)

(L�T )(X)

�
(3.3.24)

where the above convergence is stable in law, MN(0; U2) is a random variable

having a mixed normal law with the characteristic function �(u) = E[e�
U2u2

2 ] and

L��T (X) = LT (X)
�
R+

K2(u)du+ LT (X
�)

�
R�

K2(u)du.

In particular, they proved the consistency and the asymptotic normality of the

di�usion coe�cient in the presence of jumps with in�nite activity and �nite variation,

such as the gamma process. The interested reader can found more details in the
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original papers.

We can �nd other versions of kernel estimator in the literature. Except the

Nadayara-Watson case to which we shall refer for in all this thesis, two other types

of kernel smoothers deserve to be considered. The �rst introduced by Priestley and

Chao (1972), is de�ned by

b�PCh (x) =
1

h

nX
i=1

(Xi �Xi�1)~�iK(
x�Xi

h
);

In the same spirit, Gasser-Müller (1979) proposed the following estimator

b�PCh (x) =
1

h

nX
i=1

~�i

si�

si�1

K(
x� u

h
)du;

where s0 = 0; si = (Xi�Xi+1)=2; i = 1; :::; n�1; and sn = 1. The Gasser-Müller

estimator may also be written as

1

h

1�

0

�n(u)K(
x� u

h
)du (3.3.25)

where �n(:) is a piecewise constant function

�n(u) =
nX
i=1

�iI[si�1;si](u)

In other words, The Gasser-Müller estimate is the convolution of �n(:) with

K(:=h)=h:

The previous estimator present some important di�erences, Chu and Marron

(1991) refer to Nadaraya-Watson estimator as being an �evaluation type� and the

Gasser-Müller one as a �convolution type�. Nevertheless, when the design points are

approximately evenly spaced, the di�erence between the evaluation and the convo-

lution estimators is unimportant. However, as Chu and and Marron (1991) argued,

� when the design point are not equally spaced, or when they are i.i.d random vari-
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able, there are very substantial and important di�erences in these estimators. There

are, nonetheless, certain basic principles that both estimator types obey. In all this

thesis, we will not encouter such a problem because our simulated data and market

data is chosen in order to be equally spaced. Therefore the use of the Nadaraya-

Watson estimator is justi�ed and we expect to obtain consistent results. There are

wide classes of nonparametric regessions making use of ideas from orthogonal series.

These include orthogonal polynomials and wavelets. The interested reader can �nd

an exhaustive review in Hart (1997).



Chapter 4

Application of nonparametric

estimation

In this chapter, we will use the Nadayara-Watson estimator to compare several spot

volatilities performance in estimating the di�usion coe�cient. The principal pur-

pose is to construct our model with selective estimators of spot volatility proposed

by several authors, which are based on the observed trajectories. Many nonparamet-

ric estimators have been proposed. However, microstructure noise is not taken into

account. We test the new proposed estimators by means of Monte Carlo simulations

of the univariate model of the short rate pioneered by Chan et al., and compare it

with the previous analog estimators available in the literature, namely the estima-

tors proposed by Florens-Zmirou and R. Renò. The results strengthen the �ndings

available in the literature on the functional form of the di�usion coe�cient.

4.1 Introduction

We are concerned with the problem of confronting several spot volatilities and anal-

yse their capability as nonparametric estimator of di�usion coe�cient. Since the

early nineties, many authors have been questioned about the best way of estimating

di�usion coe�cient, namely volatility. The main motivation being the fact that it is

63
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the substratum in practically every �nancial application.

In most continuous-time �nance literature, the model speci�ed as the underlying

process of the state of asset prices, exchange rates, or spot interest rates is a time-

homogeneous Ito di�usion process represented by the following stochastic di�erential

equation (SDE):

dXt = �(Xt)dt+ �(Xt)dWt (4.1.1)

with initial condition X0 = �, where Wt is a standard real Brownian motion and

the real function �(x) and �(x) are such that a single solution Xt of the stochastic

di�erential equation (4.1.1) exists. Our speci�c problem is to estimate the di�usion

term �(x) when we observe a discrete realization of the process Xt, namely n + 1

observations X̂0,...,X̂n at times t0=0 < t1< ...< tn = T in the interval [0; T ]. We will

consider throughout this chapter that the state variable refers to the spot interest

rate so that, we suppose Xt = rt. We need then to estimate �(r) where rt satis�es

the above setting.

The theory is constructed on Nadaraya-Watson estimators type which are given

by the following formula :

�̂2(x) =

Pn
i=1K

�
x�X̂i

h

�
~�2iPn

i=1K
�
x�X̂i

h

� (4.1.2)

where ~�i is a consitent estimate of the volatility at time ti and h is a smoothing

parameter.

In many studies, the authors are concerned with estimating the parameters of

equation (4.1.1), especially the di�usion coe�cient. Returns and Volatilities are di-

rectly related to asset allocation, risk management, option pricing and proprietary

trading. To achieve these objectives, the stochastic dynamics of the underlying state

variables have to be speci�ed correctly. For instance, option pricing theory allows us

to value stock, index options or any value of a general asset and hedge against the

risk of option writers once the model for the dynamic of underlying state variables

is available. See the book of mathematical �nance by Bjork (2009), Willmott (1998)
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among others. Althouh many of the stochastic models in use are simple and conve-

nient ones to facilitate mathematical derivations and statistical inference, they are

not derived from any economics theory and hence cannot be expected to �t time series

�nancial data. Thus, while the pricing theory gives relativately beautiful formulas

when the underlying dynamics is correctly speci�ed, it o�ers no or little guidance in

choosing or validating the model. There is always the risk that misspeci�cation due

to parametric approach leads to erroneous valuation and hedging strategies. Fur-

thermore there do not always exist the closed form solutions for the state variable

and the derivative pricing speci�ed by the function �(r) = �(r;
�!
� ) with

�!
� being

a vector of real parameters. Hence, there are genuine needs for �exible stochastic

modeling. Nonparametric approaches o�er a complete and aesthetic treatement for

tackling the above problems.

To avoid misspeci�cation, recent researches have used nonparametric estimation

techniques in order to avoid having to specify the functional form for the di�usion

coe�cient. They are useful for examining the extent to which the dynamic of a

�nancial asset vary over the time. This approach can be applied in any branch of

quantitative �nance. For instance, it can be used to test some commonly accepted

economic theories such as capital asset pricing model and shed a light on the question

such as if the geometric Brownian motion really �ts stocks index, whether the one

factors interest rate models �t yields of the bond, and if the interest rate dynamics

evolve with the time. Furthermore, when empirical data are available, one can �t

directly the observed contingent claim prices with their associated characteristics

and check if the estimated prices are consistent with the theoretical ones.

Ait-Sahalia (1996a) proposed a semiparametric model, in the sense that he as-

sumed that the drift follows a linear equation of the form

�(r) = �[� � r] (4.1.3)

which can be estimated using ordinary least squares

Using the Kolmogorov forward equation, Ait-Sahalia constructed his estimator

on the fact that, provided the spot rate has the dynamic of the equation (4.1.1), the
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volatility can be estimated by the following:

�(r) =
2
� r

�1
�(y)�(y)dy

�(r)
(4.1.4)

where �(r) is the unconditional distribution of r. Equation (4.1.4) is resolvable

substituting �(:) by (4.1.3). This estimator is not fully nonparametric, because the

drift needs to be speci�ed. After specifying the drift, we need to identify the uncon-

ditional distribution �(r). Nevertheless, following Scott (1992), Silverman (1986),

we can accomplish this task with nonparametric techniques and replace �(r) in the

(4.1.4). Suppose our observations are equally spaced, and denote them by the dis-

crete realization of the process rt namely, r̂i i = 0; 1; :::; n: Then the nonparametric

estimator of the density is given by:

�̂(r) =
1

nh

nX
i=1

K

�
r � r̂i
h

�
(4.1.5)

where K(:) is the kernel function and h a bandwidth parameter which depends on n.

One popular way of estimating densities through formula (4.1.5) is the histogram,

where the kernel function is an indicator function of a compact real interval centered

around zero, that is called naive method. Well-known serious drawback of the naive

method is that it is by de�nition not a continuous function but has jumps at the

endpoints of the window and zero derivatives everywhere else.

In his paper, Ait-Sahalia showed that estimation results contradict all the �ndings

related to classical univariate models such as Vasicek and CIR. Ait-Sahalia (1996a)

showed that under certain regularity conditions the estimator (4.1.4) is pointwise

consistent and asymptotically normal. However, this estimation procedure has to

rely on the parametric speci�cations of the drift term and works only for the strictly

stationary di�usion processes.

The �rst example of a fully nonparametric estimator of the di�usion coe�cient

was proposed by Florens-Zmirou (1993). Her estimator is fundamentally di�erent

from that used in Ait-Sahalia (1996a), in the sense that she does not impose any
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restriction on the functional form of the drift. Her estimator is obtained by setting

~�2i =
n
T
(r̂i+1 � r̂i)

2 in (4.1.2), thus getting:

�̂2(r) =
T
Pn�1

i=1 K
�
r�r̂i
h

�
(r̂i+1 � r̂i)

2

n
Pn�1

i=1 K
�
r�r̂i
h

� (4.1.6)

The variance estimator (4.1.6) can be seen as the conditional variance of r, and

it seems to have nice properties because the same kernel is in the numerator and in

the denominator; this feature cancels out the biases in �nite samples coming from

nonparametric estimation of the density. The estimator (4.1.6) has been used by

Jiang and Knight (1997) on Canadian interest rates, and by Stanton (1997) on U.S.

interest rates.

An analogous estimator to that of Florens-Zmirou (1993) has been proposed by

Bandi and Phillips (2003), and implemented in Bandi (2002). The corresponding

spot volatility estimator is given by:

~�i =
n

T

1

mi

miX
j=0

[r̂ti;j+1
� r̂ti;j ]

2 (4.1.7)

where ti;j is the subset of indexes such that

ti;0 = inffk � 0 : jr̂k � r̂ij � "sg;

and

ti;j+1 = inffk � ti;j +4t : jr̂k � r̂ij � "sg;

mi is the number of time that jr̂k � r̂ij � "s, "s is the parameter to be selected

and 4t is the time step between adjacent observations. While the Florens-Zmirou

estimator weights the observation rt with the quadratic variation at time t, the Bandi

and Phillips estimator weights the observation rt with the average quadratic variation

of price at all observations that di�er from rt of the parameter less than "s. It is

important to remark that Bandi and Phillips do not require the process (4.1.1) to

be stationary, but only the weaker condition to be recurrent. This condition can be
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important theoretically, since Bandi (2002), showed that there is no strong support

to the assumption of stationarity of interest rate data.

In the framework of Nadayara-Watson, Renò (2008) proposed two new estimators.

The �rst estimator is based on results of the Fourier coe�cients of volatility imple-

mented in Malliavin and Mancino (2002), and the second is based on the realized

volatility proposed by T.Andersen and T.Bolloserv (1998).

These estimators were shown to be consistent and asymptotically normal.

This chapter is organized as follows. Section 4.2 describes the volatility models

that we consider, while Section 4.3 describes methodology and results. In Section

4.4, we discuss our empirical �ndings and determine the best volatility model, while

Section 4.5 present some results based on S&P 500 data and Section 4.6 concludes.

4.2 Spot volatility estimators

We are going to compare the performance of di�erent spot volatilities models in

terms of their ability to estimate the volatility paths of returns, de�ned as in (4.1.1).

The basic spot volatility model is de�ned in the following way:

~�2(t0k) =
(X(t0k)�X(t0k�1))

2

40
where 40 =

T

N

Nevertheless due to the simplicity of this estimator, it is shown to be very noisy.

Therefore, academicians look for estimators which can reconstruct accurately the

path of the volatility.

The literature on modeling and forecasting ex-post �nancial market volatility

extends the original idea of Merton (1980), who observed that the variance over

a �xed interval could be estimated arbitrarily, although accurately, as the sum of

squared realizations, provided the data are available at a su�ciently high sampling

frequency. Infortunately, the crude utilisation of this realized variance do not take

microstructure noise into account. Zhang et al.(2005) introduce a consistent model

that allows for the microstructure contaminations.

Several di�erent volatility models are developed in the literature by assuming
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Comte and Renault (1998)

~�2R(t
0
k) =

1
m

mP
j=1

(X(t0
k�m=2+j

)�X(t0
k�m=2+j�1

))2

40 where 40 = T
N

Ogawa and Sanfelici(2010)

~�2(t0k) =
G(�)�1

L

LP
i=1

(40

k+l
�X)2

40 :

Foster and Nelson (1996)
~�2E(t

0
k) = (1� �)

Pi
j=1 !i[X(t0k�j+1)�X(t0k�j)]

2::

Andreou and Ghysels(2002)
~�2W (t0k) =

PnL
j=1 !j[X(t0k�j+1)�X(t0k�j)]

2:

Malliavin and Mancino(2002)

~�(t) = lim
M!1

MP
k=0

[ak(�
2)cos(kt) + bk(�

2)sin(kt)] :

Table 4.1: Speci�cation of the Spot Volatilities

di�erent structures for �2t . We list the speci�cation of all the spot volatility models

used in this chapter in table 4.1.

4.2.1 Nonparametric estimation

Let's reconsider the following SDE:8<:dXt = �(Xt)dt+ �(Xt)dWt

X0 = �
(4.2.1)

de�ned over the interval [0; T ], in the �ltered probability space (
; (Ft)0�t�T ; P )

satisfying the usual conditions.

The nonparametric estimator for the di�usion function �2(Xt) of a general dif-

fusion process is based on observingXt at ft1; t2; :::; tng in the time interval [0; T ]. We

will discuss only the equispaced data case. Subsequently, we let fXt = X4n ; X24n ; :::; Xn4ng
be n equispaced observations at discrete points ft1 = 4n; t2 = 24n; :::; tn = n4ng,
where 4n = T

n
.

We assume K(:) 2 L2(R) to be a bounded kernel, that is,
�1
�1

K(x)dx =
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1, continuously di�erentiable and with bounded �rst and positive derivative, with

limx!1K(x) = limx!�1K(x) = 0. We opt to use the gaussian kernel, and therefore

we set

K(s) =
1p
2�

e�
s2

2 (4.2.2)

We also de�ne a sequence of bandwiths hn such that:

(hn)n2N is a real sequence such that, as n!1, we have hn ! 0 and nhn !1:

A very common value for hn used in applications (Scott, 1992), (Silverman, 1986)

is the following

hn = hs�̂n
� 1

5 (4.2.3)

where hs is a real constant to be tuned, and �̂ is the standard deviation of

analysed sample, �̂2 = V ar[r̂i]. Following the same idea of chapter 3, we construct

the nonparametric estimator as

Sn(x) =

nP
i=1

K(
Xi4n�x

h
)~�2i

nP
i=1

K(
Xi4n�x

h
)

(4.2.4)

where ~�i is a consistent estimator of the spot volatility, and the �rst factor at the

numerator and the denominator can be use to have a discrete approximation of the

kernel function.

4.3 Methodology and results

For analysing the spot volatility, we simulate discrete data from the model proposed

by Chan et al. (1992) which includes the CIR (1985) and Vasicek (1977) models as

a particular case, in which we add microstructure contaminations. By Monte Carlo

experiments, we evaluate the performance of the competing estimated volatilies in

measuring the value of the true volatility path. The instantaneous variation of the
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interest rate is given by the following formula

drt = �(�� rt)dt+ �r
t dWt (4.3.1)

where Wt is a standard Brownian motion. The model has a�ne drift, with

stochastic volatility, with the parameter 
 measuring the degree of dependence of

the variance on the interest rate level. We assume further that the logarithmic

noises are normal and independent from r in order to avoid the leverage e�ect.

We simulate the model (4.3.1) through a simple Euler �rst order discretization

scheme to get the trajectories of the short rate rt and from that we deduce the value

of the spot volatility as �2t = �̂2r2
̂t ; which is also known as CEV model. When

taking into account microstructure noise, observed returns must be sampled at a

lower frequency so as to have accurate realized volatility type estimates. In our

analysis, we face two types of errors, the �rst inserted voluntarily and the second

which is attributed to discretization. So that one part of the bias is caused by this

error and the other part is related to discretization. As point out by Jiang (1998),

direct estimation of Chan model is not possible from discretly observed data because

their transition density or exact moment conditions is out of reach. However, several

authors have estimated the parameters of the model (4.3.1), and in this work we will

use the ones estimated by Jiang (1998) using indirect inference. Parameter estimates

are b� = 0:079(0:044), b� = 0:093(0:100), b
 = 1:474(0:008), b� = 0:794(0:019), where

standard errors are in brackets. When simulating the Chan model, the choice of spot

rate interest is crucial, so that, we simulate the model with parameters resembling

actual interest rates distribution. We use as starting value 3% which is almost

equal to the smallest value in the 3-months T-bill analyzed by Jiang (1998). In the

same vein Mancini and Renò (2006) argued that 3-months T-bill is an appropriate

choice since 7-day Eurodollar produces many jumps. The true and observed data

are generated over a daily trading period of T = 24 hours as in the foreign exchange

markets, since it has no geographical location and no �business hour� limitation.

Andersen and Bollerslev (1998) and other authors computed the ex-post daily foreign

exchange volatility by aggregating D = 288 squared �ve-minute returns. In our
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simulations we will also compute the spot volatility with D = 144; corresponding

to ten-minutes returns, and D = 720 corresponding to two-minutes returns. In

the end, we introduce a microstructure error with zero mean and the variance to

the noise to signal rate equal to 2. In order to assess the performance of di�erent

procedures for estimating the volatility, we calculate the value of the following three

loss functions. Firstly, we determine the integrated squared error
� T

0
(�̂2t � �2t )

2dt

between the generated and the reconstruted variance trajectories and we calculate

the average and the standard deviation of this measure over a given number of days.

Broadly speaking, the estimation approach is better when the average (or standard

deviation) is smaller. Successively, we evaluate the statistic relative error de�ned

as �t =
�̂2t��

2
t

�2t
and the relative bias is afterwards de�ned by: �� = 1

N

NP
t=1

�t and �2t is

the simulated volatility paths. Finally, we calculate The Root Mean Square Error

de�ned as RMSE =

�
1
N

NP
t=1

�2t

�1=2

.

Once the values of the loss functions are calculated, it is possible to order the

models according to their losses. The model with the minimum loss is the best model.

Figure 4.3.1 shows the true and the estimated variance paths for Nd = 50 days of

transaction and sampling frequency of 10 minutes. Each �gure contains the simulated

path of the true volatility on the bottom and the estimated volatility obtained with

di�erent estimators on the top for any graph. We do not shows the results related

to 5 minutes and 2 minutes here because the trends are almost the same.

For computing �̂2CR, we extract the daily observation times in such a way that the

di�erence is 7.2 minutes, D = 200; where D represents the number of step we use to

divide intervals for any observation ti = i. At the same time for the real-time scheme

estimator we use the whole data set. In the estimating of the Ogawa and Sanfelici

estimator the parameters L andM are considered but,M is the smoothest parameter

needed to �lter the noise in the presence of microstructure e�ects. For the one-sided

exponential and the one sided rolling window volatility, two smoothing parameters

have been added � = 0:94 and � = 0:665. The Fourier parameters are chosen

arbitrarily as NF = 50 and � = 2 in order to �lter out high frequency noise modes.

Moreover, this estimator has been computed by reconstructing the Fourier expansion
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Figure 4.3.1: True and Estimated variance paths: Top Left Comte and Renault
estimator; Top Right Ogawa and Sanfelici Estimator; Bottom Left Exponential Es-
timator; Bottom middle rolling Estimator; Bottom Right Fourier Estimator.
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on each day separately, because otherwise it would provide a too smooth trajectory

but nevertheless capable of capturing the peaks of the volatility path. The best

volatility estimates are provided by the �2F , ~�
2
CR and the ~�2OS in term of the Integrated

Squared Error, when the frequency of observation is high, it is easy to notice how any

volatility estimator react with respect to microstructure contaminations. The Bias

and the RMSE statistic equal in absolute value to around 1:3874e � 04 for all the

estimators. Table 4.2 and Table 4.3 report the results of di�erent loss functions that

we consider, as well as the mean and the standard deviation of every spot volatility

estimator.

In order to compare the ability of reconstructed estimators in estimating the

di�usion coe�cient, we simulate 100 trajectories containing 500 days each and sub-

stitute the corresponding ~�i with each spot volatility estimators. For this purpose,

we still use the Chan model, successively we compute the spot volatility path, of the

simulated trajectories by using the asymptotic properties of the estimator (4.2.4),

we reconstruct the corresponding nonparametric estimator for any spot volatility

estimator.

When comparing the estimators in small sample, we have to check not only

the unbiasedness and the precision of the estimators, but the realibility of the

asymptotic con�dence intervals, since those are the ones actually used to draw

inference. The variance of �̂2(x) can be consistently estimated by V̂ [�̂2(x)] =

�̂4(x)=
nP
i=1

K ((Xi � x)=hn)(Jiang 1998).

Figure 4.3.2 shows the average measurements on Monte carlo simulations, esti-

mated di�usion coe�cient for 500 days of transaction for the di�erent estimators,

together with the corresponding 5% and 95% con�dence intervals, obtained with the

estimator (4.2.4).

We suppose to have intraday data, where the number of observations is N=50000,

the number of observations intraday is D=100, and the number of days take into

account is ND=500. We will furthermore select hs = 1:06 and the variance is backed

out from the considered data set.

We want to confront the proposed estimators to the popular estimators of Florens-
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Figure 4.3.2: The generated Monte Carlo squared di�usion coe�cient according to
the CEV model together with the average estimate, using 100 replications, with six
methods: the classical estimator (4.2.4), top; Florens-Zmirou, Comte and Renault
and Fourier estimator and the Exponential, Rolling and Sanfelici and Ogawa esti-
mator, bottom. The outer lines are 5% and 95% con�dence intervals, as computed
with the simulations.
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Zmirou, Fourier and Comte and Renault since the latter has been shown to be

more precise because it has narrower con�dence intervals Renò (2008). We notice

that, the Florens-Zmirou, the Fourier, Exponential �lter and Rolling �lter estimators

use low frequence data, while the Comte and Renault and Ogawa and Sanfelici

estimator use the whole dataset. The Comte and Renault displays the narrowest

con�dence bands. Notwithstanding, the Comte and Renault, Florens-Zmirou, Ogawa

and Sanfelici estimators being consistent, the Florens-Zmirou seems to be the less

precise one. We notice that, the Exponential �lter and Rolling estimators are biased,

Exponential �lter provides a very striking feature. This can be attributed to the

smoothing parameter which slowers the value of the spot volatility in long run time.

Figure 4.3.3 shows the simulated competing nonparametric estimators with mi-

crostructure noise contaminations. When introducing microstructure noise contam-

inations, the order of precision seem to be the same, however the Florens-Zmirou

estimator remain always the less precise. It is worth noting that, the bandwidth

have to be increased when we introduce microstructure noise. For this purpose we

consider h=4 which is the considered value when analyse the real data

In both cases, the result found by Jiang (1998) are con�rmed in the sense that

the volatility function is neither constant nor a linear function of the state variable

as demonstrated by the trend of all estimators. The nonparametric estimator cap-

tures very well the functional form of the volatility evidenced in the Chan model,

as estimated by Jiang (1998) and Renò (2008), because the function is nonlinear

and overall increasing of the short rate. We can also remark that, low interest rates

are associated with low volatility and high interest rates are associated with high

volatility, suggesting that low interest rates are more like absorbing states and in-

terest rates are more likely to stay low than high. This is con�rmed futhermore by

the fact that, the 95% con�dence band is narrower in the begining but tends to get

wider dramatically toward the end for the lack of enough observations around the

high levels of interest rate.

When simulating the spot volatility and the nonparametric estimation, we don't

take into account the model pioneered by T.Andersen and T.Bolloserv (1998) and

used in Renò (2008) since theoretical results and Monte Carlo simulations show that
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Figure 4.3.3: The generated Monte Carlo squared di�usion coe�cient with microstru-
ture noise according to the CEV model together with the average estimate, using 100
replications, with six methods: the classical estimator (4.2.4), top; Florens-Zmirou,
Comte and Renault and Fourier estimator and the Exponential, Rolling and Sanfelici
and Ogawa estimators, bottom. The outer lines are 5% and 95% con�dence intervals,
as computed with the simulations.
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Method Int.Sq.Err Relative Bias RMSE Mean Std Dev
~�2R 2:1652e� 05 �1:3874e� 04 1:3874e� 04 1:0828e� 03 1:7336e� 03
~�2E 3:2723e� 05 �1:3875e� 04 1:3875e� 04 1:175e� 03 1:8928e� 03
~�2W 2:2723e� 05 �1:3878e� 04 1:3878e� 04 7:6741e� 03 2:0531e� 03
~�2OS 9:4157e� 05 �1:3879e� 04 1:3879e� 04 1:0738e� 03 1:5493e� 03
~�2F 10:304e� 05 �1:3177e� 04 1:3177e� 04 1:8906e� 02 1:9487e� 02

Table 4.2: Integrated Squared ErrorRel.Sta.Err, RMSE, Mean and standard devia-
tion of the Spot volatility estimator with

Method Int.Sq.Err Relative Bias RMSE Mean Std Dev
~�2R 1:9374e� 05 �6:9372e� 05 6:9372e� 05 1; 10454e� 03 2:1207e� 03
~�2E 2:8713e� 05 �6:9376e� 05 6:9376e� 05 9:8229e� 04 2:259e� 03
~�2W 1:67375e� 05 �6:9393e� 05 6:9376e� 05 7:4101e� 04 2:2502e� 03
~�2OS 1:3057e� 05 �6:9385e� 05 6:6323e� 05 1:81234e� 03 1:7354e� 03
~�2F 7:72471e� 05 �6:5873e� 05 6:5873e� 05 5:1434e� 02 1:2031e� 02

Table 4.3: Integrated Squared ErrorRel.Sta.Err, RMSE, Mean and standard devia-
tion of the Spot volatility estimator with D=288

it is indistinguishable from the model of Comte and Renault (1998). Furthermore, it

is worth noting that, Bandi and Phillips (2003) estimator nests the previous models

and the Florens-Zmirou (1993) estimator in estimating the di�usion coe�cient; see

Renò, Roma and Schaefer (2006) for the latter case. This depends on the choice

of the parameter "s in Bandi and Phillips (2003) estimator formula. Which can be

tantamount to latter when "s is small and contains the T.Andersen and T.Bolloserv

estimator when "s get bigger.

Method Int.Sq.Err Relative Bias RMSE Mean Std Dev
~�2R 1:9374e� 07 �4:4672e� 06 4:4672e� 06 1; 10454e� 03 2:1207e� 03
~�2E 2:8713e� 06 �4:5676e� 06 4:5676e� 06 9:8229e� 04 2:259e� 03
~�2W 1:67375e� 06 �4:7893e� 06 4:7896e� 06 7:4101e� 04 2:2502e� 03
~�2OS 1:3057e� 06 �4:3985e� 06 4:3985e� 06 1:81234e� 03 1:7354e� 03
~�2F 7:72471e� 07 �3:5783e� 06 3:5787e� 06 5:1434e� 02 1:11e� 02

Table 4.4: Integrated Squared Error, Rel.Sta.Err, RMSE, Mean and standard devi-
ation of the Spot volatility estimator with D=720
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N Min Max Mean Std. Dev. Skew Kurt Autocorr
11611296 -5.6316 3.6570 1.1956e-005 0.0212 -2.4358 1.4893e+003 -8.8959e+003

Table 4.5: Summary Statistics of tick-by-tick returns on the S&P 500 of the January
2, 1990 to december 29, 2006.

4.4 Data and Empirical Methodology

Our empirical analysis is based on the data from the NYSE Transaction and Quote

(TAQ) database which records all trades and quotations for the securities listed on the

NYSE, AMEX, NASDAQ, CME, and the regional exchanges. The sample consists

of the tick-by-tick data of S&P 500 index futures recorded at Chicago Mercantile

Exchange. The data spans from January 2, 1990 to December 29, 2006, a period

of 4,274 trading days (11,611,297 observations). We preferred futures data over the

index data. First, the S&P 500 index is calculated based on the last transaction price

of each of the (500) stocks comprising the index, and not every stock trades every

minute. This results in an infrequent trading problem, meaning the index lags actual

developments, especially at the opening of trading since it takes some time before

each of the 500 stocks begins trading. For the measuring and forecasting of stock

market volatility it is of crucial importance to correctly measure the trade-by-trade

return.

Since the consecutive prices are nonstationary, we �nd appropriate to study

changes in price. Followings other reseachers, we study the compound return (dif-

ference in the logarithmic value of the two consecutive prices). Table 4.5 shows the

summary statistics of the tick-by-tick returns.

The number of ticks in our sample varies considerably. The average return of the

tick-by-tick data is negligible with respect to its standard deviation. The returns are

skewed slightly to the left. The kurtosis is most higher than 3, the correspondant

kurtosis of a Normal distribution. The Jarque-Bera test obtained with the con�dence

interval of 5% rejects the hypothesis of normal distribution of returns.

Figure 4.4.1 shows the trend of S&P 500 index price, the S&P 500 index log

returns and the frequency distribution log returns when the sample frequency is one

minute and the analyzed period range from January 2, 1990 to December 29, 2006.
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Figure 4.4.1: Top Panel: S&P 500 price index one minute trend for the period
January 2, 1990 to December 29, 2006. Middle Panel S&P 500 one minute log
returns index from the period January 2, 1990 to December 29, 2006. Bottom Panel
Frequency distribution of S&P 500 returns index from the period January 2, 1990 to
December 29, 2006 compared with the Normal distribution.
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4.5 Results

The main subjet of this section is to investigate the properties of the di�erent spot

return volatility, we use intradaily return on the S&P 500 range over the January

2, 1990 to December 29, 2006. We graph the corresponding spot volatility for the

S&P 500 over the period January 2, 1990 to December 29, 2006. This variance

are obtained using 1-minute observation frquency. The di�erent estimators show to

reconstruct in almost the same way the volatility as presented in the Figure 4.5.1

We have analysed the properties of the di�erent realized volatility estimators,

the Fourier estimator evidences the highest standard deviation; suggesting that it

varies a lot over time, the Ogawa and Sanfelici estimator is more stable through time

because it has the smallest standard deviation. When breaking down skewness and

kurtosis, the distributions variances and standard deviations are clearly non-normal

both are skewed right and leptokurtic. The fourier estimator shows to have the

smallest skewness and kurtosis, while the rolling estimator counterpart presents the

biggest one.

4.6 conclusion

In this chapter, we compared several spot volatility models, in term of their ability

to reconstruct the true volatility. Successively, we have used these spot volatilities

to estimate the di�usion coe�cient function in the equation (4.2.4) by means of the

Nadayara-Watson estimators. The estimators are compared with the other coun-

terparts available in the literature, via Montecarlo simulations of the Chan et al.

model.

The performance of the volatility models has been measured at di�erent sampling

frequency using three loss functions, the realized volatility proposed by Comte and

Renault reveals to be the most accurate among the studied volatility.

We use the studied spot volatility to compute for a high frequency time series of

S & P 500

When turn to the nonparametric estimator of the di�usion coe�cient our �ndings
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Comte and Renault estimator on S&P 500
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Exponential estimator on S&P 500
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Rolling estimator on S&P 500
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Figure 4.5.1: Estimated variance paths: Top Left Comte and Renault estimator; Top
Right Ogawa and Sanfelici Estimator; Bottom Left Exponential Estimator; Bottom
middle rolling Estimator; Bottom Right Fourier Estimator constructed on S&P 500
index from the period January, 2 1990 and December, 29 2006.
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are in line with those presented in the literature, the estimator of Comte and Renault

is the most accurate and evidence no bias, while the exponential counterpart is the

less accurate and shown to be very biased. However, those nonparametric estimators

can be used to variety of applications



Chapter 5

Option pricing with nonparametric

di�usion coe�cient

5.1 Introduction

More than three decades ago, F. Black and M. Scholes published a fundamental paper

on options pricing, where they indroduced the so called the Black-Scholes equation

and the Black-Scholes model. In the same year, Merton published a paper on the

same topic independently. The work of Black and Scholes had positive e�ects on

the world of �nance regarding the problem of options pricing. Nevertheless, given

the success of that model in parsimoniously describing market option prices, it's not

immediately obvious what the bene�ts of making such a modeling choice might be.

Some of the important assumptions of the Black-Scholes model are that the un-

derlying asset's price process is continuous, the ability to hedge without transaction

costs, the independent Gaussian returns, and the volatility is constant. Only this

last parameter is not directly observable but it can be estimated from time series

data. If the latter were true, this last assumption would lead to the conclusion that

if we plot volatility against the strike price we would obtain a straight line, parallel

to the horizontal axis. Equalizing the Black-Scholes model with the market observed

option price and solving for volatility give us the implied volatility. Moreover, for

84
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options with di�erent maturities and di�erent strikes which are written on the same

stock, one should �nd the same implied volatility, meaning that the volatility of the

stock is unique. Such it not the case. When plotting implied volatility using real

market data one typically obtains a convex curve, known as the �smile curve� or the

�volatility smile� for the stock price, with minimum price �at the money� i.e. where

the strike price is equal to the underlying spot.

From empirical studies, we can infer that the distribution of stock price returns

is highly peaked and fat-tailed relative to the Normal distribution and squared log

returns evidence volatility clustering. Fat tails and the high central peak are char-

acteristics of mixtures of distributions with di�erent variances. This motivates some

authors to model variance as a random variable. The volatility clustering feature

implies that volatility (or variance) is auto-correlated. In the model, this is a conse-

quence of the mean reversion of volatility.

In order to have a more realistic approach to the problem of option pricing, jump

models and stochastic volatility models have been introduced. Jump models deal

with the assumption of continuity by allowing the spot asset's process to jumpMerton

(1976). When studying stochastic volatility models the volatility is described by a

stochastic process. These models are used in order to price options where volatility

varies over time. Stochastic volatility models are useful because they explain in a

self-consistent way why it is that options with di�erent strikes and expirations have

di�erent Black-Scholes implied volatilities or the �volatility smile�. In particular,

traders who use the Black- Scholes model to hedge must continuously change the

volatility assumption in order to match market prices. Their hedge ratios change

accordingly in an uncontrolled way. More interestingly for us, the prices of exotic

options given by models based on Black-Scholes assumptions can be wildly wrong

and dealers in such options are motivated to �nd models which can take the volatility

smile into account when pricing these.

Given the computational complexity of stochastic volatility models and their

very strict di�culty of �tting the current prices vanilla options, academicians and

practitioners sought a simpler model of pricing exotic options consistently with the

volatility smile: the local volatility, the model has been studied �rst by Dupire,
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Derman and Kani. In the local volatility model, we can posit a volatility that is a

function of the spot process itself. Therefore, the spot process is a Markov process

solution of a stochastic di�erential equation.

Assuming that the underlying asset price follows di�usion processes, by imposing

suitable conditions on the kernel, we can obtain the nonparametric volatility func-

tion of the underlying asset-return process. The constructed volatility will be the

continuous-state analog to the implied binomial tree proposed by Rubinstein (1994)

and Derman and Kani (1994), and the implied volatility functions in Dupire (1994),

and Dumas, Fleming and Whaley (1995). The prices obtained with the nonparamet-

ric are consistent with options pricing theory. Furthermore, the estimated volatility

prevailing in our models evidences the main features of the true implied volatility

and is in line generally with those in the literature for the six classes of options in

which our sample is divided.

In this chapter, we compare the competing nonparametric volatility models in-

troduced in chapter 3 in term of pricing of the European call option written on the

S&P 500. To our knowledge, this is the �rst investigation in this direction. Although

many important contributions have been done on the stochastic volatilities, authors

have concentrated on parametric estimations of the volatility and then used it for the

options pricing, see Hull and White (1987) and Heston (1993) among others. Santon

(1997), Jiang and Knight (1997), and Renò (2008) proposed nonparametric paradigm

in estimating the di�usion coe�cient, but they use it to evaluate the dynamic of the

spot rate of interest rate. Jiang (1998) used nonparametric estimation of the drift,

volatility and market price of risk for pricing the options written on interest rates.

We have structured this chapter as follows. In Section 5.2, we borrow from several

authors and present a brief review of stochastic volatility models. We present the

implementation technique for computing option price using nonparametric approach

in Section 5.3. In section 5.4, we recall some well-known models used to confront our

proposed model. In Section 5.5 we present the implementation of numerical method,

while in Section 5.6 we present empical results and compare our results with other

models available in the literature. Finally, we summarise our �ndings in section 5.7.
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5.2 Stochastic volatility

In this section, we use the one dimension price process de�ned on a complete prob-

ability space, (
;F;P), evolving in continuous time over the interval [0; T ], where T

denotes a positive integer. We further consider an information �ltration, i.e., an in-

creasing family of sigma-�elds, (Ft)t2[0;T ] � F, which satis�es the usual conditions of

P-completeness and right continuity. Finally, we assume that the asset prices through

time t, including the relevant state variables, are included in the information set Ft.

For tackling the drawbacks of the original option pricing, several authors proposed

competing models. The �rst popular model of stochastic volatility was proposed in

Cox (1975), namely the CEV model. In that framework, the same one-dimension

Brownian motion governs the stock price and the stochastic volatility of this price.

Strictly speaking, it assumes that the relative stochastic volatility of the underlying

asset price is state dependent, so the �t = �(St): In the model proposed by Cox, the

stock price follows the corresponding dynamic under the risk neutral probability P�

dSt = Strdt+ �S�t dW
� (5.2.1)

where � > 0; and 0 � � � 1 are constants. For � = 1, (5.2.1) yields the

Black and Scholes model. Cox (1975) assumed that the �ltration Ft is generated

by the driving Brownian motion W �. Then the CEV model is complete, so that

any European contingent claim that is Ft- measurable and P�- integrable possesses

a unique arbitrage price given by the risk-neutral expectation

�t(X) = BtEP�(B
�1
T (h(ST )=Ft):

where h is the pay o� and B is the price of the risk free asset.

The most interesting advantage of CEV model over the classical Black and Scholes

model derives from the presence of the additional parameter � that renders the

formal model �exible than the other one. By their approximate formula, Hagan and

Woodward (1999a) conclude that the CEV model has an inherent �aw of incoherently

predicting the future movements of the Black-Scholes implied volatility.
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In the same vein, Hagan et al. (2002) examined the dynamics of the implied

volatility smile. In their model, the authors analysed under the martingale measure

P
� the forward price which is assumed to obey the SDE

dFt = �̂tF
�
t dW

�
t (5.2.2)

where

d�̂t = ��̂td ~Wt; �̂0 = � (5.2.3)

where Ft is the forward value, �̂ is the volatility, � is the volatility of the volatility

and W �and ~W are Brownian motions with respect to a common �ltration F, with a

constant correlation �; the previous given model is termed by the SABR model. It

is an extention of the classical CEV model. We will not focus on this type of model

in this work.

We are rather interested in the following type of volatility in which we suppose

that the stock price dynamic is of the form

dS(t) = �(t)S(t)dt+ �(t)S(t)dW1 (5.2.4)

has a stochastic dynamic for his own, i.e

d�(t) = �(S; �; t)dt+ ��(S; �; t)dW2 (5.2.5)

with

corr(dW1; dW2) = �dt

In that setting, the new stochastic quantity that we are modeling, namely the

volatility, is a nontraded asset. Thus we are confronted to the problem of hav-

ing a source of randomness that cannot be trivially hedged away. Because we

have two sources of randomness the option have to be hedged with two other con-

tracts, one being the underlying asset as usual, however we need another option to

hedge the volatility risk. Applying standard Ito formula, and following the standard
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Black&Scholes pdf derivation we obtain the following equation:

@V

@t
+

1

2
�S2(t)

@2V

@S2
+ ����S(t)

@2V

@�@S
+

1

2
�2��2

@2V

@�2
= �(�� '�)

@V

@�
(5.2.6)

for some function '(S; �; t): Conventionally, '(S; �; t) is called the market price

of volatility risk because it tells us how much of the expected return of V is explained

by the risk (i.e standard deviation) of � in the Capital asset price framework.

This nice SDE, however don't always have a closed form solution and when the

solutions are available is not easy to �gure out. Moreover, given the extreme di�culty

of �tting existing parameters to the current prices of vanilla options, practitioners

sought a simpler way of pricing exotic options consistenly with the volatility skew.

Breeden and Litzenberger (1978) proved that the risk neutral pdf could be derived

from the market price of European options. Inspired by that result, Dupire (1994)

and Derman and Kani (1994) noted that under the risk-neutrality, there was a unique

di�usion process consistent with this distribution. The corresponding unique state-

dependent di�usion coe�cient �L(S; t) consistent with the European option prices is

known as the local volatility function.

Noting that the local volatility will in general be a function of the current stock

price S0; the price process can be written as

dSt
St

= �(t)dt+ �L(S; t;S0)dW (5.2.7)

Before using our model, we will modi�ed the lognormal model supposing that the

volatility is a deterministic positive function of time and stock price: � = �(t;Xt):

The stochastic di�erential equation modeling the asset price now is

dXt = �Xtdt+ �(t;Xt)dWt (5.2.8)

and the function C(t; x), given the no-arbitrage price of the European derivatives

at time t when the corresponding asset price is Xt = x, satis�es the generalized
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Black-Scholes partial di�erential equation

@C

@t
+

1

2
�2x2

@2C

@x2
+ rx

@C

@x
� rC = 0 (5.2.9)

where the derivation is identical to the constant-� case present in the seminal work

of Black-Scholes. The coe�cient is substituted by �(t;Xt). The terminal condition

is the pay o� function: C(T ;x) = h(x).

In this new model, the market is still complete since the randomness of the

volatility was introduced as a function of the existing randomness of the lognormal

model. There exists a unique risk-neutral martingale measure P� under which the

stock price is a geometric Brownian motion with drift rate r and the same volatility

�(t;Xt) thanks to Girsanov theorem:

dXt = rXtdt+ �(t;Xt)dWt (5.2.10)

Although the risk-neutral valuation is still possible, we know that using the non-

parametric estimators, the Black and Scholes formula is no longer relevant in the

sense that the new partial di�erential equation cannot have explicit solution any

more.

Applying the Itô Lemma together with the risk neutrality, give rise to the Dupire

equation which is de�ned as

@C

@T
=

�2LK

2

@2C

@K2
+ (r(T )�D(T ))

�
C �K

@C

@K

�
(5.2.11)

where r(t) is the risk-free rate, D(t) is a dividend yield and C is the short for

C(S0; K; T ) the undiscounted option prices of di�erent strikes.

Proof. From Gatheral (2006) ,

Suppose the stock price di�uses according to the equation

dS

S
= �tdt+ �L(St; t)dW: (5.2.12)
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where �t = rt �D and the local volatility �L(S; t)

The undiscounted risk-neutral value C(S0; K; T ) of a European option with strike

K and expiration T is given by

C(S0; K; T ) =

� 1

K

dST'(ST ; T ;S0)(ST �K); (5.2.13)

where '(ST ; T ;S0) is the risk-neutral probability density of the spot at time T .

It evolves according to the Fokker-Planck or Kolmogorov Forward equation

1

2

@2

@S2
T

(�2LS
2
T')�

@

@ST
(�ST') =

@'

@T
: (5.2.14)

Di�erentiating (5.2.13) with respect to K gives

@C

@K
= �

� 1

K

dST'(ST ; T ;S0) (5.2.15)

and
@2C

@K2
= '(ST ; T ;S0) (5.2.16)

Successively di�erentiating with respect to T we obtain

@C

@T
=

� 1

K

dST

�
@

@T
'(ST ; T ;S0)

�
(ST �K) (5.2.17)

by using (5.2.14) in (5.2.17)

@C

@T
=

� 1

K

dST

�
1

2

@2

@S2
T

(�2LS
2
T')�

@

@ST
(�ST')

�
(ST �K) (5.2.18)

Integrating the �rst part of (5.2.18) by parts,
� b

a
fg0dx = [fg]� � b

a
f 0gdx; gives�1

K
dST

n
1
2

@2

@S2T
(�2LS

2
T')

o
(ST �K) =

=

��
1

2

@

@ST
(�2LST')

�
(ST �K)

�1
K

�
� 1

K

dST
1

2

@

@ST
(�2LS

2
T') (5.2.19)

using the fact that limK!1ST = 0 the term in the braces vanishes and the second
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term becomes
�2LK

2

2
'. Integrating the second term of (5.2.18) by part yields

� �1
K
dST

n
1
2

@
@ST

(�ST')
o
(ST �K) =

[��ST'(ST �K)]1K �
� 1

K

dST (�ST') (5.2.20)

following the same method as before, the term in the braces vanishes. This leads

to the following equation

@C

@T
=

�2LK
2

2
'+

� 1

K

dST�ST' (5.2.21)

The second equation can be written as

� 1

K

dST�ST' = �

�� 1

K

dST'(ST �K) +K

� 1

K

dST'

�
(5.2.22)

We can remark that the �rst term on the right hand side above is exactly the

undiscounted option value from (5.2.13). By using (5.2.15) to the second term of

(5.2.22) and (5.2.16) to the �rst term of (5.2.21) we �nally obtain the (5.2.11).

When expressing the option price as a funtion of forward price FT = S0expf
� T

0
�(t)dtg;

we would get the same expression except for the drift. That is

@C

@T
=

�2K

2

@2C

@K2

where C now represents C(FT ; K; T ): Inverting this gives

�2(K;T; S0) =
@C
@T

1
2
K2 @2C

@K2

(5.2.23)

The right hand side of equation (5.2.23) can be computed from known European

option prices.
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5.3 Implementation method

The nonparametric estimate of the di�usion coe�cient can be seen as a local volatil-

ity since the estimated volatilities are constructed on the local trajectories of the

underlying process. In this section we will use all the nonparametric coe�cient pre-

sented in the previous chapter to derive the corresponding price of European call

option.

In this section we try to face up to Dupire problems contained in the Dupire

approach. As we introduce previously, suppose that the dynamic of an underlying

asset has the following equation,

dSt
St

= �tdt+ �(t; St)dW

where the local volatility function is parametrized as : � : [0; T ]�]0;1[!]0; �max[;

and the function C(T;K), given the no-arbitrage price of the European derivatives at

time T when the corresponding asset price is Xt = K, the strike price, then satis�es

the generalized Dupire partial di�erential equation8<:@C
@T

= 1
2
�2(T;K)K2 @2C

@K2 + (r �D)(C �K @C
@K

) 8(T;K) 2]0; T [�R�+
C(0; K) = (S �K)+ 8K 2 R�+

(5.3.1)

where the derivation has been explicitly discussed in the previous section. The

initial condition is the pay o� function: C(�;K) = h(K); with � = T: Theoretically,

we can use this equation to �nd out the local volatility �(:; :) from a collection of

option prices (T;K) ! C(T;K) observed for a continuum of values of (T;K): this

is the Dupire formula already mentioned in the previous section:

�(T;K) =

s
2(CT + rKCK)

K2CKK

and this volatility is unique as Dupire assumes that there is a bijection between the

call price C(Ti; Ki) and the local volatility �(Ti; Ki).
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Despite the fact that the theory ensures that there exists a unique local volatility,

it is non-trivial problem to recover it from real option data. This drawback derives

from the assumption of a well de�ned European option price space, which is not the

case on real markets. In practice, only a �nite number of options [C l(Ti; Kj)]i;j is

available for di�erent maturities Ti and strike Kj. This renders the problem strongly

underdeterminate. For being close to the theory, practitioners resort to smoothness

procedures or interpolation techniques of the implied volatility surface in order to

obtain a continued and smoothed collection Ĉ(T;K) to which the Dupire formula

will be applied.

The set of price Ĉ(T;K) on which the estimation of the volatility is based may

not be a perfect observation of the market price, but a reconstruction (non unique-

ness). Therefore, even in the theoretical case where the observed option prices come

from a di�usion model, the reconstituted collection Ĉ(T;K) can di�er from the theo-

retical price C(T;K) obtained from the di�usion model. The di�erence between the

reconstructed collection price Ĉ(T;K) using smoothnesss or interpolation can have

a complex dependence in (T;K). We will not focus on that aspect here.

An alternative way to determine the local volatility can be reached by following

DK approach (Derman and Kani, 1994). Although the two approaches are concep-

tually tantamount, the method presented in this section allows estimation of rather

much smoother local volatility functions. From a numerical standpoint, these two

approaches are further di�erent from our nonparametric in the sense that we are

not imposing the recombination of a computational tree, nor constrained to evaluate

numerically the di�erential of the prices of the option CK;T (t; S):

Whatever the method we use to reconstruct the local volatility function, it is not

possible to recover � but its estimator ~�(:; :) which will be in the best case close to

�(:; :). If we denote the bias as "(:; :) which depends on expiration T and strike K,

the observation error or the error of the reconstruction of the collection of option

prices can be then de�ned as

~�(t; S) = �(t; S) + "(t; S):
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The estimator ~�(:; :) of the local volatility function is then used into equation (5.3.1)

to evaluate every type of options and the derivatives on other �nancial instruments.

In Section 5.6 we use our competing nonparametric estimators to determine European

call price of options written on the S&P 500, however we are interested in measuring

our nonparametric volatility estimators in term of their capability of deriving option

prices that is close to the option market prices.

5.4 Competitive methods

In order to assess the performance of our model in option pricing we will compare it

with popular well-known models; The original Black-Scholes model (B&S) ( 1973),

Merton's jump di�usion model (M) (1976) and the Heston's stochastic volatility

model (H) (1993).

In the B&S model the underlying stock price is assumed to have the dynamic of

the geometric Brownian motion di�usion process of the form

dSt = �Stdt+ �StdWt

where � and � are volatility (constant) and the drift of the underlying asset.

In the Merton model the stock price underlying is assumed to follow a jump

di�usion process

dSt = (�� �jkj)Stdt+ �StdWt + (Jt � 1)Stdq

where q is a Poisson process uncorrelated with W and the intensity �j, which is

the rate at which jumps occur, Jt is proportional increase in the stock price at time

t and kj = E(Jt � 1) stands for the average jump size. The closed-form solution

for the price of European call exists in the special case that the logarithmic of Jt is

Normally distributed, with standard deviation �j,

CM =
1X
n=0

e��
0�(�0�)n

n!
CBS(S; � ;�n; rn) (5.4.1)
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where �0 = �j(1 + kj); �
2
n = �2j + n�2j=� and rn = r � �jkj + nlog(1 + kj)=�

In the end, in the Heston model it is assumed that the spot price at time t follows

the di�usion

dSt = �Stdt+
p
VtStdW

1
t

where W 1 is a Wiener process. The volatility Vt follows an Ornstein-Uhlenbeck

process

d
p
Vt = �
�(t)dt+ �(t)dW 2

t

and W 2 is another Wiener process such that W 1 and W 2 are correlated with

correlation �: Let x =
p
Vt and apply the Ito's formula in f(x) = x2. The result is

dVt = [�2 � 2
Vt]dt+ 2�
p
VtdW

2
t

Then if we let, k = 2
; � = �2

2

, and � = 2� we end up with the Heston model where

dSt = �Stdt+
p
VtStdW

1
t (5.4.2)

dVt = k[� � Vt]dt+ �
p
VtdW

2
t (5.4.3)

corr(dW 1; dW 2) = �dt (5.4.4)

V is the implied spot variance of the returns, k is the mean-reversion speed, �

is the long-run variance and � is the volatility parameter of the di�usion volatility

Vt. If � < V then the process decreases until the volatility goes under the theta

parameter. Then it goes up again and so on. A closed form solution for this model is

available in Heston (1993) and can be implemented by numerical integration of the

characteristic function.
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5.5 Implementation of numerical method

In this section we use the simpli�ed Dupire equation presented in the previous section

where we suppose that the dividend yield D(T ) and the risk-free rate r(T ) are zero,

namely we consider future prices. The same consideration can be used in the original

Black & Scholes equation, but for computational convenience, we have chosen the

Dupire equation. Given the above restriction, the Dupire equation can be written as

�2(K;T )

2

@2C

@K2
=

@C

@T
(5.5.1)

where C(S; t;K; T ) denotes the premium at time t for a spot S of an European call

of strike K and maturity T . Both derivatives should be positive to avoid arbitrage.

We will use equation (5.5.1) to determine the option prices using our nonparametric

estimates for �2(K;T ). One advantage of this forward equation-type is that all

cross-section option series with the same maturity can be valued instantaneously. A

di�erent approach is to solve the Black & Scholes PDE as many time as options of

di�erent exercise price are; for the two approaches we obtain the same results. But

the second approach will be much time consuming.

The new equation can be interpreted in another way. If �2(K;T ) is known, it

establishes a relationship between the price as of today of call options of varying

maturities and strikes.

Equation (5.5.1) can be seen as the opposed of the classical Black & Scholes partial

di�erential equation which involves, for a �xed option (K and T �xed), derivatives

with respect to the current time and value of the spot price. This happens if we set

the interest rate equal to zero in the Black & Scholes equation, therefore we retrieve

the following:

��
2(S; t)

2

@2C

@S2
=

@C

@t
(5.5.2)

Equation (5.5.1) and (5.5.2) can be thought as operating in the same space of

functionals (dual). However, the relationship is not always true, as (5.5.2) applies

to any contingent claim, though (5.5.1) holds because the intrinsic value of a call

happens to be the second integral of a Dirac function.
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We know from standard results that the arbitrage-free price for a contingent claim

according to the Dupire approach is given by the following formula

C(F; t;K; T ) =

� +1

K

(FT �K)+'(FT )dFT (5.5.3)

Where r = 0; F = Ft is the future price.

Following the Fokker-Planck equation our problem can be reduced to the follow-

ing: 8>>><>>>:
@C
@�
� �2(K;�)

2
@2C
@K2 = 0; � � 0

C(K; 0) = (F �K)+

(5.5.4)

� = T � t with t = 0

this problem is parabolic equation with initial condition C(K; 0) which can be

interpreted as the price today of a call with strike K and immediate maturity.

5.5.1 Discretization method

We now describe the numerical procedure we have used to compute the approximated

solution of the previous PDE.

In order to discretize the Dupire equation, we should work on a bounded open set

O = (Kmin; Kmax) where K is a constant to be chosen carefully in order to reduce

the approximation error of the algoritm. We also need to specify the boundary

conditions. In our case, we shall impose the linearity conditions. These conditions

are suitable for instance when a �nite di�erence solution is required ( e.g., when

there are discrete dividends, when we want to use local volatility surface �(S; t) in

our model, or when the strike price resets periodically), and simple, yet consistent

boundary conditions are strong to de�ne. It is found to be that, however, in a large

number of option structures far from the strike price, or other such 'interesting'

regions, the option value is nealy linear with respect to the spot. This observation

is true for many exotic and path-dependent options, and plain vanilla options.

Once the problem has been localized, we restrict K to belong to the interval
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[Kmin;Kmax] and � varying in the interval [0;T ], we successively obtain the semi-

discretized equation8>>>>>><>>>>>>:

@C
@�
� �2(K;�)

2
@2C
@K2 = 0; in ]Kmin;Kmax[�[0;T ];

@2C
@K2 (Kmin; �) = 0; if � 2 [0;T ];

@2C
@K2 (Kmax; �) = 0; if � 2 [0;T ];

C(K; 0) = f(K) = max(0; S0 �K) for K 2]Kmin;Kmax[:

(5.5.5)

Let N = (Kmax�Kmin)
dx

the number of elements of the grid and h a number to be

chosen carefully which is the step of the discretization in space, we set for i varying

from 0 to N

Ki = Kmin + ih

fi = f(Ki)

Consider the vector ch = (cih)1�i�N in R
N as the discrete approximation of a

function C (i.e. cih � C(Ki)) and replace the �rst derivative @C(Ki)
@K

with

@hc
i
h =

ci+1h � cih
h

:

Similarly, replace the second derivative @2C(Ki)
@K2 with

@2hc
i
h =

ci+1h � 2cih + ci�1h

h2
:

Set the vector ~Ahch =
�̂2(Ki)

2

ci+1
h �2cih+c

i�1
h

h2

We set

�i =
�̂2(Ki)

2h2

�i =
�̂2(Ki)

h2



CHAPTER 5. OPTION PRICINGWITH NONPARAMETRIC DIFFUSION COEFFICIENT100

�i =
�̂2(Ki)

2h2

We have then, for every i 2 f1; :::; N � 1g and for every � :�
~Ahch(�)

�
i
= �ic

i�1
h (�) + �ic

i
h(�) + �ic

i+1
h (�)

when i = 0; we have for whatever T a Dirichlet type boundary conditions c0(�) =

S0e
�r(��t0) and therefore, the �rst equation for i = 1�

~Ahch(�)
�
1
= �1c

0
h(�) + �1c

1
h(�) + �1c

2
h(�):

when i = N(K = Kmax); we have for every � the linearity boundary condition

cNh (�) = 0; whereof, the last equation for i = N � 1�
~Ahch(�)

�
N
= �Nc

N�2
h (�) + �Nc

N�1
h (�) + �Nc

N
h (�):

under the speci�ed linearity conditions, ~Ah is an intermediate operator of RN�1

which is represented by the following matrix:

�
( ~Ah)ij

�
1�i;j�N

=

0BBBBBBBBBBBBBBB@

0 0 0 0 � � � � � � 0 0

0 �1 �1 0 � � � � � � 0 0

0 �2 �2 �2 0 � � � 0 0

0 0 �3 �3 �3 � � � ... 0
... 0

...
. . . . . . . . . 0

...
... 0 0 � � � �N�1 �N�2 �N�2

...

0 0 0 0 � � � �N�1 �N�1 0

0 0 0 0 � � � � � � 0 0

1CCCCCCCCCCCCCCCA
The space discretization conduct to the ordinary equation8<:

dch(�)
d�

� ~Ahch(�) = 0 if � 2]0; T ]
c(�0) = f

(5.5.6)

where f = (f(Ki))1�i�N�1.
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Using the ��schemes, the time discretization of this equation can be de�ned.

Suppose that � 2 [0; 1]; and let k be the time-step such that T = Mk. We approx-

imate the solution ch at time nk by the cni , where the sequence (cni )n=0;:::;M are the

solution of the recursive equation:8<:c0 = f

cn+1
i �cn

k
+ � ~Ancni + (1� �) ~An+1cn+1i = 0 if 0 � n �M � 1

(5.5.7)

where ~An = ~Ah(� + nk)

the previous system is solved by forward induction.

We can obtain two di�erent schemes type according to the value of �.

� if � = 1, the scheme is explicit,

� if 0 � � � 1, the scheme is implicit.

Now we have to resolve a linear system of the form

Mncn+1 = qn (5.5.8)

where

M = I + �4�
4K2

~Ah

q = I � (1��)4�
4K2

~Ah

with M an (N � 1; N � 1) matrix being tridiagonal for any n. To solve this

system, we can triangularize it at every time-step using the pivoting method.

Up to now, we have not mentioned the estimation of the drift coe�cient in this

dissertation. The principale raison being that it is not in�uenced in evaluating the

option prices when using equation (5.5.1). Nevertheless, Jiang and Knight (1998)

demonstrated that with additional assumptions, the drift function can be estimated

as

�̂(x) =
1

2

�
d�̂2(x)

dx
+ �̂2(x)

p0(x)

p(x)

�
by using the information contained in the marginal density function p(x), along

with the estimated �̂2(x).
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5.6 Empirical �ndings

In this section, we concentrate on the comparative analysis of all the nonparametric

volatility estimators introduced in the previous chapter and successively, we make

the comparison of our method with the popular well-known methods available in the

literature, namely the Black & Scholes, the Jump-Di�usion model and the Heston

model. All our empirical results will be based on the S&P 500 data set.

5.6.1 Data description and characteristics

We focus on the options of the S&P 500 index, which are the most actively traded

European-styled contracts and have the daily dividend distribution of the index

available (from the S&P 500 Bulletin). The nice characteristics of this index have

permitted to many researchers to test their theoretical work on it. Therefore, S&P

500 options and options on S&P 500 futures have been analysed by Bates (1998),

Dumas et al, Rubinstein (1994), Sanfelici (2007). These considerations provide us

a motivation to apply on it our nonparametric estimators and successively we will

compare our results to the S&P 500 call options obtained from the CBOE (Chicago

Board Option Exchange). The analysed sample spans from the period January 4,

1993 to Decemder 31, 1993 (253)

Table 5.1 describes the main characteristics of our data set. During the one year

considered period the variation exhibited by short-term interest rates is small in size:

they range from 2.85 from 3.21%. The options in our sample vary considerably in

price and terms; for instance, the time-to-maturity vary from 1 to 350 days, with a

median of 66 days.

The average total daily volume during the considered period was 65476 contracts.

Following the CBOE practice, the expiration months are the three near term months

followed by three additional months from the March quaterly cycle (March, June,

September, December). The options are European, they expire on the third Friday

of the month and the underlying asset is an index, the most likely case for which a

lognormal assumption (with continuous dividend stream) can be justi�ed. By the

simple e�ect of diversi�cation, jumps are less likely to occur in the index than in the
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Variable Mean Std.dev Min Max
Call price, C($) 18.29 17.32 0.0249 68.60

Implied volatility (%) 11.01 2.98 5.07 36.83
�(days) 79.96 66.56 1 350

K (index points) 445.52 27.48 375 550
F (index points) 454.87 10.21 429.18 474.21

r(%) 3.06 0.08 2.85 3.21

Table 5.1: Summary statistics for the sample of trade CBOE daily call option prices
on the S&P 500 index in the period January 4,1993 to December 31,1993 (13 078).�
denotes the times to maturity, r the riskless rate, K the strike price and F the S&P
500 futures value implied from the call and put prices. ' Std.dev.' denotes the sample
standard deviation of the variable. During this period, the average daily value of the
variable of the S&P 500 index was 451.66

individual equities. This feature allows us to think that the market is as close as the

theoretical assumptions underlying the Black & Scholes model.

The beginning sample contains 16 963 call options, we take the average of bid

and ask price as our raw data. We consider observations with the time-to-maturity

longer or equal to one day. The implied volatility greater than 70% and price less

than 0.02 or greater than 70.00 were cancelled out. After that, we remain with a

�nal sample of 13078 observations.

When applying our nonparametric approach to the raw data, we have to face

three important problems. Firstly, in-the-money options are very infrequently traded

with respect to at-the-money and out-the-money options, The former is notoriously

unreliable. There is an unbalance daily volume for out-of-the-money contracts and

the volume of in-the-money contract of the same magnitude.

Secondly, the underlying index price is very hard to observe at the exact times

that the options prices are recorded. Especially, there is not guarantee that the

closing index value is reported at the same time as the closing transaction for each

option. S&P 500 index are traded on the Chicago Mercatile Exchange(CME), not on

the CBOE and the time-stamped recorded quotes may not necessarily be perfectly

synchronized across the two markets. Mismacth of little size can lead to economically

signi�cant but spurious pricing anomalies.
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Thirdly, the index typically pays dividend and the future rate of dividend payment

is di�cult, if not impossible, to determine. The daily dividend provided by Standard

and Poor's on the S&P 500 is by nature forward-looking, and there is no reason

to assume that the actual dividends recorded ex post correctly re�ect the expected

future dividend at the time the options is priced.

We can tackle this uncomfortable drawback following Ait-sahalia and Lo (1998)

and Sanfelici (2007). Based on the fact that all options are recorded at the same

time on each day, we require only the temporally matched index price per day. To

get around the unobservability of the dividend rate �t;� , we deduce the futures price

Ft;� and St for each maturity � . By the spot-futures parity, Ft;� are linked through

the relationship

Ft;� = Ste
(rt;���t;� ): (5.6.1)

To derive the implied futures, we resort to the put-call parity relation, which

must be satis�ed if arbitrage opportunity are to be eliminated, independently of any

parametric option-pricing model.

C(St; K; �; rt;� ; �t;� ) +Ke�rt;� = P (St; K; �; rt;� ; �t;� ) + Ft;�e
�rt;� (5.6.2)

where C and P denote respectively the call and the put price of actively traded op-

tions with the same strike K and the time-to-expiration � . From this expression, we

require reliable call and put prices at the same strike price K and time-to-expiration

� . For this purpose, we must use calls and puts that are closest to at-the-money.

It is well known that in-the money options are illiquid relative to the out-of -the-

money counterparts, hence any matched pair that is not at-the-money would have

one potentially unreliable price.

We use the formula introduced in the previous chapter to derive our nonpara-

metric local volatility function. Successively we evaluate the di�erent approach by

substituting each estimate in the equation (5.5.1) for pricing European call.

We divide our data set into several categories as in Baskhi et al. (1997) and San-

felici (2007). Following these authors the division criteria is according to moneyness

St=K or the time-to-expiration � . We say that a call option is at-the-money (ATM)
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if 0:98 < St=K � 1:02; out-of-the money (OTM) if St=K � 0:98 and in-the-money

(ITM) if St=K > 1:02: A �ner repartition resulted in six moneyness categories. When

classifying our data by term of expiration, we say an option contract has a short term

maturity if � < 60 days, medium term maturity if 60 � � � 180 days and long term

maturity if � > 180 days. From empirical data, the proposed moneyness and matu-

rity classi�cation produce 18 categories which are reported in the Table 5.2 . ITM

and ATM options account for respectively 50% and 24% of the total sample, while

the short-term and the medium term take up respectively around 47% and 43%. The

average price varies from $0:19 for short-term deep OTM options to $47; 29 for log-

term deep ITM calls. For empirical study, each class can be used since the options

are partitioned quite uniformely in the di�erent moneyness categories and included

nearly 1500 observations each and every.

Many approaches have been proposed to extract local volatility function: Der-

man and Kani (1994), and Rubinstein (1994) proposed the non arbitrage binomial o

trinomial tree model where the volatility function is obtained at the end of each node

inverting the corresponding call price. In the continous time approach proposed by

Dupire, B (1994), it is retrieved by means of the equation (5.5.1), where it is assumed

to know the prices of options of all strikes and maturities via the implied volatility

surface. Loosely speaking, we know the quantity CK;T (0; S) as a function of K and

T , and therefore it is quite immediate to evaluate (numerically) the derivatives of

the observed option prices with respect to the maturity and the strike price.

Our approach is completely di�erent, in the sense that the volatility is estimated

from the underlying index dynamics and does not rely on option prices, we construct

our nonparametric estimator directly on the S&P 500 data using the Nadayara-

Watson formula which has been explained in the previous chapter, we derive the

nonparametric estimator by substituting in the latter the corresponding spot volatil-

ity estimators reported in the Table 4.1 (chapter 4). It is well known that index

price stock are nonstationary, this particular feature of stock options renders the

nonparametric estimation very challenging. Therefore we need to choose cleverly

the parameter used to construct our local volatility function by means of our non-

parametric estimator. We can assume that what we observe in the �nite interval
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Moneyness 
S/K   <60 60-180 >180 Subtotal 

OTM <0,96 0.19 0.81 2.35 1.01 
    478 979 436 1893 
  0.96-0.98 0.78 2.90 10.43 2.42 
    738 640 114 1492 
ATM 0,98-1,00 2.66 6.52 13.50 4.66 
    861 647 58 1566 
  1.00-1.02 7.56 11.78 17.75 9.66 
    874 656 56 1586 
ITM 1.02-1,04 14.64 18.09 25.21 16.99 
    788 611 143 1542 
  >1.04 33.46 39.01 47.29 36.97 
    2416 2192 391 4999 
Subtotal   16.56 19.42 21.78 18.29 
    6155 5725 1198 13078 

 

Table 5.2: The reported numbers are, respectively, the average quoted bid-ask mid
point price and the total of observations for each moneyness-maturity category. S
denotes the spot S&P 500 index level and K is the exercise price.
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[0; T ] is a part of stationary process. Moreover, the other correction is to choose the

bandwidth, we �nd that the smoothness parameter that provide acceptable result

is contained in the interval 17 � h � 25, out of this band we obtain unsastifying

results. An higher value of h will lead to a smoother estimate of the density in the

tails of the distribution where fewer data are available. We �nally maintain h = 20

because is the value of the bandwidth which give appealing outcomes when applying

on every our six classes. Furthermore, if the kernel function is locally lipschitz, it

can be applied to the nonstationary data. We have used tick-by-tick data of S&P

500 from which we have extracted all price with observation frequency one minute in

order to mitigate the e�ect of microstructure noise. Futhermore, the theory assumes

that when the distance between two observations is close to zero, an arbitrary pre-

cision in the estimate of the spot volatility can be reached. Broadly speaking, these

facts contribute to the improvement of our local volatility function. The estimator

~�(K; �) evidences a strong volatility smile in general. We will turn on this aspect

later.

We want to check if our nonparametric estimators of volatility verify the empirical

facts exhibited by implied volatility when applied in the stock data. The Table 5.3

summarizes the main features of the implied volatility, which is obtained by inverting

the Black & Scholes formula from each option price in our sample and successively

produce an average 'implied' Black volatility for each moneyness-maturity category.

The results show that the average B-S implied volatility tend to decrease monotically

as the call option move from deep ITM to ATM and then this variation is strong

for the short-term options, which evidences a slight smile; this suggests that the

short-term options are proned to severe mispricing. From the smile evidence, we

can observe a negatively skewed implicit return distributions with excess kurtosis.

Therefore, any acceptable model intended to price options written on S&P 500 have

to be consistent with these features.

We describe the procedure used to estimate the spot volatility and the other

structural parameters of the alternative models. A well consolidated practice (Bakshi

et al. 1997, Sanfelici 2007) is to compute option-implied parameters by implementing

each model in the two steps as explained below.
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1. Collect m option prices taken from the same point in time t (or same day)

for any m greater than or equal to one plus the number of parameters to

be estimated. For each j = 1; :::;m; let �j and Kj be respectively the time to

expiration and the strike price of the jth option; let Cj(t; �j; Kj) be its observed

price and Ĉj(t; �j; Kj) its price worked out by the model with St and rt;� taken

from the market. The di�erence Cj � Ĉj is a function of the values taken

by � = f�g in the B-S model, by � = f�j; �j; �j; kjg in the J-D model and

� = fpV ; �� ; kj; �� ; �g in the Heston model. For each j, we de�ne

�j(�) = Cj(t; �j; Kj)� Ĉj(t; �j; Kj):

2. Find the parameter vector � to solve the nonlinear least-squares problem at

time t

SSE(t) = min
�

mX
j=1

[�j(�)]
2 (5.6.3)

Go back to Step 1 until the two steps have been repeated for each day in the

sample.

The objective function (5.6.3) is de�ned as the sum of squared pricing error and

may force the estimation to assign more weight to relative expensive options (e.g.,

ITM and long-term options).

In the calibration procedure, when the
Ft;�j
Kj

does not belong to the grid G, the

value Cj is approximated by the quadratic interpolation of the nearest grid points.

5.6.2 Model Comparison Results

Turn to the behaviour exhibited by our nonparametric approach, the noteworthy

fact is that for all the spot volatilities used in our model, the relative local volatility

function presents a monotonically decreased trend from deep in the money and to

the deep out-of-the-money, including at-the-money options. This is consistent with

the empirical fact underlying the options written on stock index and it is in line

with other methods existing in the literature. If we focus our analisys on all options
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Figure 5.6.1: Local volatility Curves for Nonparametric Estimator with Fourier spot
volatilty.The curve relative to all classes are reported

available, the trend of any estimator is almost the same, albeit the Fourier estimator

tend to generate the most highest skew with respect to the striking price when

confronting with other estimators. We can notice in particular that our estimate

smile is exaggeratedly asymmetric, pointing to the empirical fact that the European

call options written on the stock index loss their U-shape after the 1987 crash. This

particular characteristic inherent of our models is consistent with empirical �ndings

and contrasts stochastic volatility models which typically produce symmetric smiles.

This is an other example among others that nonparametric approaches can suggest an

information for constructing parametric models, if not to valid them. Much evidence

can be found in Figure 5.6.1

Table 5.4 summarises the prices of call options on our considered sample com-

puted using the nonparametric models. When performing the simulation we use the

discretization techniques exposed below, we assume the interest rate equal to zero,
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Moneyness Time to maturity
S/K < 60 60-180 > 180 Total
OTM <0.96 8.51 8.00 8.53 8.25

0.96-0.98 7.98 8.53 9.91 8.36
ATM 0.98-1.00 8.57 9.21 10.03 8.89

1.00-1.02 9.80 9.98 10.45 9.90
ITM 1.02-1.04 11.43 10.80 11.04 11.15

>1.04 11.78 13.02 12.49 13.83
Total 11.47 10.64 10.41 11.01

Table 5.3: Average B-S implied volatilities for di�erent moneyness maturity cate-
gories. S denotes the spot S&P 500 index level and K is the exercise price.

this does not harm very much our results. We start our analysis focusing on the

whole dataset available in our sample. The value of the call options is almost of the

same range for each maturity. A noteworthy fact is that the price �gured out by

the Florens-Zmirou estimator and the Comte and Renault estimator are almost the

same. This behaviour can be found also when analysing the ATM option call prices.

The ITM options call prices are the same for all maturity, the value is around $49.

Not surprisingly, our prices are consistent with the features of actual market prices

and the theoretical assumption of no-arbitrage underlying options pricing: that is

ITM options price is higher with respect to ATM options price which are in their

turn more expensive than OTM which are the cheapest in the market.

Table 5.5 reports the daily average absolute (APE), the percentage averaged error

(PPE) and the daily averaged mispricing index (MISP)

APE =

NP
i=1

���Ci � Ĉi

���
N

(5.6.4)

PPE =

NP
i=1

���Ci � Ĉi

���
N � Ci

(5.6.5)
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Nonparametric options price
Maturity

Cathegories First Second Third Four Fifth
All

24.357 24.812 25.267 26.745 28.191
24.358 24.813 25.269 26.750 28.197
24.258 24.580 24.903 25.952 26.997
24.336 24.763 25.190 26.579 27.943
24.318 24.721 25.126 26.445 27.748
24.328 24.741 25.166 26.745 27.448

ATM
16.739 17.713 18.445 19.821 29.387
16.741 17.716 18.448 19.823 20.388
16.479 17.255 17.873 19.232 19.957
16.686 17.622 18.336 19.719 20.321
16.642 17.552 18.255 19.648 20.274
16.354 17.675 18.654 19.256 20.345

ITM
49.064 49.064 49.064 49.064 49.064
49.064 49.064 49.064 49.064 49.064
49.064 49.064 49.064 49.064 49.064
49.064 49.064 49.064 49.064 49.064
49.064 49.064 49.064 49.064 49.064
49.064 49.064 49.064 49.064 49.064

OTM
3.792 4.462 5.053 6.596 7.789
3.793 4.464 5.057 6.603 7.789
3.636 4.131 4.586 5.825 6.822
3.759 4.394 4.959 6.444 7.602
3.675 4.321 4.487 6.555 7.802
3.731 4.333 4.870 6.287 7.396

Table 5.4: Estimated nonparametric call options on the S&P 500 index for di�erent
moneyness.The six elements of each cell are from top to bottom the price obtained
with the following estimator: Florens-Zmirou, Comte and Renault, Rolling Extima-
tor, Rolling Exponential, Ogawa & Sanfelici and the Fourier
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MISP =

NP
i=1

(Ci � Ĉi)=Ci

NP
i=1

���(Ci � Ĉi)=Ci

��� (5.6.6)

where Ci is the observed call price available on the market, Ĉi is the call price

worked out using nonparametric techniques, and N is the sample dimension. The

mispricing index ranges from -1 and 1 and indicates on average, the overpricing (when

it is negative) and the underpricing (when it is positive) induced by the model. In

general, our model tends to overprice the options irrespectively on the class where

it is applied. When the model underprices options, the bias is higher in magnitude.

The APE index tends to be high when applied to all data available. The ATM

and OTM classes have the lowest APE, but when moves to ITM class this index

increases considerably, this is probably due to the fact that ITM options are illiquid,

viz di�cult to price. The PPE index presents a very alternated` behaviour. When

we confront our result using MISP index, we notice that, our estimators tend to

overprice call price in general in all the analysed classes. But things change when

we analyse the ITM class. In this case the MISP is positive for all the estimators,

suggesting that this loss function underprices in-the-money options.

To gain a better insight into the di�erent nonparametric models performance,

we apply our model each time using one of the six alternative sets from the whole

sample: ITM, ATM, OTM, short-term, meduim-term, long-term categories. The

error tend to be small in the whole sample with respect to the other categories in

terms of APE and MISP, while being high relative to PPE. When ATM options are

priced, the resulting estimates do not signi�cantly di�er from their counterparts for

the whole data set. OTM call options are associated with relative low pricing error,

while ITM options correspond to higher mispricing error, indicating that, for the

illiquid ITM calls to be priced properly, the volatility of the underlying needs to be

higher than for all options of any maturity to be priced.

When analysing with respect to time to expiration, short-term option seem to be

more challenging, they are associated with the highest pricing error. However, the
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Florens-Zmirou All options ITM ATM OTM SHORT MEDIUM LONG
APE 0.69 1.34 0.93 0.59 0.44 0.68 0.83
PPE 0.40 0.04 0.19 1.06 0.44 0.43 0.24
MISP -0.82 0.83 0.41 -0.52 -0.90 -0.88 -0.39

Comte-Renault All options ITM ATM OTM SHORT MEDIUM LONG
APE 0.69 1.34 0.93 0.59 0.44 0.69 0.83
PPE 0.40 0.04 0.19 1.07 0.44 0.43 0.24
MISP -0.82 0.83 -0.41 -0.53 -0.90 -0.88 -0.39

Rolling Estimat All options ITM ATM OTM SHORT MEDIUM LONG
APE 0.86 1.54 1.08 0.53 0.38 0.84 1.33
PPE 0.15 0.05 0.14 0.50 0.14 0.16 0.27
MISP 0.016 0.99 0.51 0.11 -0.32 0.01 0.02

Exponential Est All options ITM ATM OTM SHORT MEDIUM LONG
APE 0.68 1.37 0.90 0.55 0.41 0.66 0.90
PPE 0.33 0.04 0.17 0.92 0.37 0.35 0.24
MISP -0.73 0.91 -0.99 -0.45 -0.85 -0.80 -0.24

Ogawa & San Est All options ITM ATM OTM SHORT MEDIUM LONG
APE 0.91 1.77 0.91 0.540 0.27 0.63 0.47
PPE 0.34 0.04 0.18 0.95 0.32 0.89 0.19
MISP -0.63 0.59 -0.90 -0.55 -0.95 -0.56 -0.25

Fourier Estimator All options ITM ATM OTM SHORT MEDIUM LONG
APE 0.69 018 0.89 0.53 0.39 0.64 0.96
PPE 0.29 0.05 0.16 0.80 0.32 0.30 0.21
MISP 0.64 0.92 -0.21 -0.36 -0.82 -0.71 -0.04

Table 5.5: Average absolute (APE) Mispricing index (MISP), and percentage (PPE)
pricing errors between the market price and the kernel based-price.

structure of mispricing by term to expiration is very simlar; this can be due to the

fact that our model does not vary according to the time parameter. This can limit

our nonparametric approach to be a true pricing engin.

In this last part we compare the results obtained with the nonparametric ap-

proach with those compute with some popular methods used by academicians and

practitioners. That is the Black & Scholes, the Jump di�usion and the Heston model.

In this comparison we have considered only the Fourier estimator. We do not com-

pare them to the other estimators studied in this thesis, because numerical results



CHAPTER 5. OPTION PRICINGWITH NONPARAMETRIC DIFFUSION COEFFICIENT114

Fourier Est All options ITM ATM OTM SHORT MEDIUM LONG
APE Fourier 0.69 018 0.89 0.53 0.39 0.64 0.96

B-S 0.53 0.32 0.41 0.26 0.33 0.69 1.15
J-D 0.20 0.14 0.20 0.11 0.12 0.17 0.19
H 0.14 0.01 0.20 0.11 0.13 0.15 0.18

PPE Fourier 0.29 0.05 0.16 0.80 0.32 0.3042 0.21
B-S 0.40 0.01 0.12 0.53 0.27 0.54 0.90
J-D 0.10 0.006 0.05 0.20 0.08 0.07 0.10
H 0.08 0.006 0.05 0.19 0.10 0.07 0.08

MISP Fourier 0.64 0.92 -0.21 -0.36 -0.82 -0.71 -0.04
B-S 0.90 -0.09 0.59 0.74 0.84 0.88 0.82
J-D 0.40 0.32 -0.003 0.13 0.19 0.39 0.43
H 0.17 0.03 -0.03 0.02 0.39 0.45 0.29

Table 5.6: Average absolute (APE) Mispricing index (MISP), and percentage (PPE)
pricing errors between the market price and the kernel based-price for the Fouier and
B-S; J-D; H model.

obtained from them have the same features. Therefore, the comments relative to

Fourier estimator are also relevant for the remainder estimators

The analysed loss function suggest that for the all four models, there is a positive

mispricing indices for all categories except for the ATM and the ITM classes in

general, However when using the MISP the price worked out using nonparametric

approach tend to understimate the option price for almost all categories apart from

All options and ITM classes, but for the considerated nonparametric model the

overpricing is observed only in the all options and ITM classes, as shown in table

5.6. The result however shows that the models systematically overprice call price

in general, except for the ITM calls for B-S and the ATM calls for J-D and the H

model. Nevertheless as one can immagine, both the J-D and the H model are more

accurate. To sum up, the nonparametric model represents a real improvement with

respect to B-S in term of pricing properties. However, the performance is worse than

the J-D and H.

The Table 5.7 reports the results computed with daily data for the Rolling esti-

mator. This estimator has been choosen because it has been originally constructed
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Rolling Est All options ITM ATM OTM SHORT MEDIUM LONG
APE Rolling 28.66 4.79 5.42 6.24 26.24 23.42 19.05

B-S 0.53 0.32 0.41 0.26 0.33 0.69 1.15
J-D 0.20 0.14 0.20 0.11 0.12 0.17 0.19
H 0.14 0.01 0.20 0.11 0.13 0.15 0.18

PPE Rolling 31.12 0.21 2.46 19.53 35.27 19.06 9.14
B-S 0.40 0.01 0.12 0.53 0.27 0.54 0.90
J-D 0.10 0.006 0.05 0.20 0.08 0.07 0.10
H 0.08 0.006 0.05 0.19 0.10 0.07 0.08

MISP Rolling -0.99 -0.26 -0.94 -0.70 -0.99 -0.99 -0.98
B-S 0.90 -0.09 0.59 0.74 0.84 0.88 0.82
J-D 0.40 0.32 -0.003 0.13 0.19 0.39 0.43
H 0.17 0.03 -0.03 0.02 0.39 0.45 0.29

Table 5.7: Average absolute (APE) Mispricing index (MISP), and percentage (PPE)
pricing errors between the market price and the kernel based-price for the Rolling
estimator using daily data and B-S; J-D; H model.

for low frequency data (daily, weekly and monthly). From the results, we notice

that the pricing error increase exaggeratedly showing that when daily data are used

for computing option prices much information contained in high frequency data are

neglected.

The computational cost of the nonparametric is less than using the closed-form

solution for the J-D model and which is cheaper than the H model. Therefore, The

J-D model represents a good trade-o� between performance and computational cost.

The Black and Scholes model is the cheapest and the Fourier estimator uses the

highest computational time among our nonparametric estimates, as shown in Table

5.8.

In the end, our empirical evidence indicates that taking stochastic volatility into

account gives the best improvement over the B-S formula. However, we can con-

clude that the nonparametric model contribute to explaining from theoretical and

quantitative standpoint the strong pricing biases inducted in the B-S model.
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All options
CPUtime

F-Z 1.24e+03
CR 1.25e+03

Rolling 1.202+e03
EXP 1.203e+03
O-S 1.262e+03
FR 2.345e+03
B-S 685.29
J-D 4.062e+03
H 9.629e+03

Table 5.8: CPU time in seconds for the computed European Call price on S&P 500
for di�erent nonparametric methods and the alternative counterparts

5.7 Conclusion

Since the seminal work of Black & Scholes on options pricing, many researchers

proposed sophisticated works in order better to evidence the empirical facts exhibited

by the market. The stochastic volatility model highly used by institutional �nancial

�rm fail in capturing empirical market features.

Following the local volatility approach pioneered by Derman and Kani (1994),

Dupire (1994), and Rubinstein (1994) who supposed that the volatility is a deter-

ministic function of asset price and time, we have studied a new approach and used

it for evaluating European call option prices.

This chapter enriches the growing literature of the nonparametric estimation by

using almost all types of spot volatility existing in the literature for computing the

option price of European call options. We have shown that our method can be

classi�ed in the class of local volatility function which has the particularity of being

complete. Relatively to other local volatility function proposed earlier, our method

is easy to manage and the computation cost is very low.

The volatility curve obtained with our approach is consitent with the actual

market. The Fourier estimator shows to exhibit better the market features compared

with other competing volatility estimators analysed.
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When applying our method to real data any nonparametric estimator show to

exhibit the same feature for every spot volatility considered in our analysis. The

striking result to acknowledge is the fact that all call price to the ITM option have

the same value, viz $49. However, our result is consistent with the actual market

price and the theoretical foundation of option pricing. As stated by several authors,

nonparametric approaches can be used to suggest the functional form to parametric

approaches and to valid them.

We compare the nonparametric model to well known popular models, such as

Black & Scholes models itself, the Jump-Di�usion model and the Heston's model

with stochastic volatility. The price worked out by nonparametric model is obtained

using the Dupire's equation which the volatility is construted directly on the S&P

500 index future price spanning from january 4, 1993 to to December 31, 1993. To

sum up, the nonparametric model represents a real improvement with respect to B-S

in term of pricing properties. However, the performance is worse than the J-D and

H.

Second, the computational cost of the nonparametric is less than using the closed-

form solution for the J-D model and which is cheaper than the H model. Therefore,

The J-D model represents a good trade-o� between performance and computational

cost. The Fourier estimator is the most time consuming among all the studied

nonparametric estimators.

In the end, our empirical evidence indicates that taking stochastic volatility into

account gives the best improvement over the B-S formula. However, we can con-

clude that the nonparametric model contribute to explaining from theoretical and

quantitative standpoint the strong pricing biases inducted in the B-S model.

A serious limitation to this approach is that it is not varying with respect to the

time parameter, including the time variations in the Nadayara-Watson estimator,

may be crucial to obtain correct speci�cation. This will permit our model to be

a real pricing engin, further investigations in that sense will be the object of next

researches.
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