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Abstract. Let C be a very general curve of genus g and let C(2) be its second symmetric
product. This paper concerns the problem of describing the convex cone Nef (C(2))R
of all numerically effective R-divisors classes in the Néron-Severi space N1(C(2))R. In a
recent work, Julius Ross improved the bound on Nef (C(2))R in the case of genus five.
By using his techniques and by studying the gonality of the curves lying on C(2), we give
new bounds on the nef cone of C(2) when C is a very general curve of genus 5 ≤ g ≤ 8.

1. Introduction

Let C be a smooth irreducible complex projective curve of genus g ≥ 0. Denote by

C(2) the second symmetric product of C which is the smooth surface parametrizing the

unordered pairs of point of C. On C(2), we can define some divisors in a natural way as

follow: fixing a point p ∈ C there are the divisor Xp := {p + q|q ∈ C} and the diagonal

divisor ∆ := {q + q|q ∈ C}. Let xp and δ denote the classes of such divisors in the

Néron-Severi group N1(C(2)). Since the class xp of the divisor Xp is independent from

the choice of the point p ∈ C, we simply denote by x such class.

Let Nef (C(2))R be the convex cone of all numerically effective R-divisors classes on

C(2) and consider the plane Π ⊂ N1(C(2))R spanned by x and δ. Our aim is to study

the two-dimensional subcone N obtained as intersection of the nef cone with the plane

Π. This is equivalent to determine the two boundary rays of N . The first one is the dual

ray of the diagonal divisor class via the intersection pairing. Namely, since the diagonal is

an irreducible curve of negative self intersection, it spans a boundary ray of the effective

cone of curves, thus one boundary of the ample cone is {α ∈ N1(C(2))|(δ · α) = 0}. The

other ray is determined by the real number

τ(C) = inf

{
t > 0

∣∣∣∣(t+ 1)x− δ

2
is ample

}
.

Hence the problem of describing the cone N is equivalent to compute τ(C). Notice

that if (t + 1)x − δ
2

is an ample class of N1(C(2))R, then it must have positive self

intersection and hence τ(C) ≥ √g.

We note that when C is a genus g curve with very general moduli (i.e. there exists a

countable collection of proper subvarieties of the moduli space Mg such that the corre-

sponding point [C] in Mg is not contained in the union of those subvarieties) the vector
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space N1(C(2))R is spanned by x and δ/2, hence N is the whole nef cone (cf. [1, Chapter

VIII Section 5]).

When C is a very general curve of genus g ≤ 3, the problem of describing the cone N

is totally understood (for details see e.g. [5] and [2]).

There is an important conjecture - due to Alexis Kouvidakis - which asserts that if

C is a very general curve of genus g ≥ 4, then τ(C) =
√
g, i.e. the nef cone is as large

as possible. In [5], the statement has been proved when g is a perfect square. Moreover

Kouvidakis proved that

√
g ≤ τ(C) ≤ g

[
√
g]

for any very general curve of genus g ≥ 5. The cases g = 5 and g ≥ 10 have been recently

improved.

In particular, by using a bound on the Seshadri constant at g general points of P2

(see [9]), as a consequence of a result due to Ciliberto and Kouvidakis (cf. [2] and [8,

Corollary 1.7]), we have that

τ(C) ≤
√
g√

1− 1
8g

for any very general curve of genus g ≥ 10. Furthermore, when C is a genus five curve

with very general moduli, Julius Ross proved that τ(C) ≤ 16/7 (cf. [8, Section 4]).

This paper concerns mainly the description of the nef cone of C(2) when C is a very

general curve of low genus. In particular, we prove the following:

Theorem 1.1. Consider the rational numbers

τ5 =
9

4
, τ6 =

37

15
, τ7 =

189

71
and τ8 =

54

19
.

Let C be a smooth irreducible complex projective curve of genus 5 ≤ g ≤ 8 and assume

that C has very general moduli. Then

τ(C) ≤ τg.

Notice that τ5 <
16
7

and that τg <
g

[
√
g]

for g = 6, 7, 8. Thus Theorem 1.1 gives a slight

improvement of the bounds on the ample cone of C(2).

The argument of the proof is based on the main theorem in [8] together with the

techniques used by Ross, due to Ein and Lazarsfeld (see [3]). Moreover, to be able to

deduce the bounds in the statement of Theorem 1.1, we present two other results. The

first one is a slight refinement of [3, Corollary 1.2] and the second one is an extension of

a result of Pirola about curves on very general abelian varieties of dimension grater than

2 (cf. [7]). In particular, we prove that the Jacobian variety J(C) of a very general curve

C of genus g ≥ 3 does not contain hyperelliptic curves (see Proposition 2.3).
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2. Preliminaries

In the following, we work over the field of complex numbers. We say that a point on

a complex projective variety x ∈ X is very general if there exists a countable collection of

proper subvarieties of X such that x is not contained in the union of those subvarieties.

Then a curve C of genus g is said to be very general if it is smooth and its corresponding

point in the moduli space Mg is very general.

2.1. Divisors on C(2). Let C be a smooth irreducible complex projective curve of genus

g ≥ 1. Its second symmetric product is defined as the quotient of the ordinary product

C × C by the natural involution. Hence the quotient map π : C × C −→ C(2) is defined

by π(p1, p2) = p1 + p2 for p1, p2 ∈ C and it is ramified along the diagonal. Let N1(C(2))R
be the vector space of the numerical equivalence class of R-divisors and consider the

classes x, δ ∈ N1(C(2))R defined in the introduction. As the diagonal divisor on C × C
defines a line bundle invariant under the natural involution, it induces a line bundle

on C(2). Since the natural map π ramifies along the diagonal ∆ ⊂ C(2), the square of

the latter line bundle is isomorphic to the one induced by ∆ on C(2) and its numerical

equivalence class is δ
2
.

We assume hereafter that C is a very general curve. Hence the classes x and δ
2

span the

whole N1(C(2))R. The intersection numbers between these numerical classes are (x2) = 1,

(( δ
2
)2) = 1 − g, (x · δ

2
) = 1 and the intersection of divisor classes spanned by x and δ

2
is

governed by the following formula:(
(a+ b)x− bδ

2

)
·
(

(m+ n)x− nδ
2

)
= am− bn g.

2.2. Seshadri constants. Let Y be a smooth complex projective variety and let L ∈
N1(Y )R be a nef class. Then we define the Seshadri constant of L at a point y ∈ Y to be

the real number

ε (y;Y, L) := inf
E

(L · E)

multyE
,

where the infimum is taken over the irreducible curves E passing through y.

Then let us state the main theorem in [8] connecting Seshadri constants on the second

symmetric product of a curve of genus g− 1 and the ample cone of the second symmetric

product of a very general curve of genus g.

Theorem 2.1 (Ross). Let D be a smooth curve of genus g − 1. Let a, b be two positive

real numbers such that a/b ≥ τ(D) and for a very general point y ∈ D(2)

ε

(
y;D(2), (a+ b)x− bδ

2

)
≥ b.

Then for a very general curve C of genus g,

τ(C) ≤ a

b
.
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As we anticipated in the introduction, Ross applies the theorem above to the compu-

tation of a bound for the ample cone on the second symmetric product of a very general

curve of genus five (see [8, Section 4]). One important tool involved in the proof is

Corollary 1.2 in [3].

The following lemma is a slight improvement of the latter result - under some addi-

tional hypothesis - and the proof follows the same argument. For a curve E, we denote

by Ẽ its normalization and by gon(Ẽ) the gonality of the curve Ẽ. Moreover, we define

the gonality of E as the gonality of its normalization.

Lemma 2.2. Let Y be a smooth complex projective surface. Let T be a smooth variety

and consider a family {yt ∈ Et}t∈T consisting of a curve Et ⊂ Y through a very general

point yt ∈ X such that multytEt ≥ m for any t ∈ T and for some m ≥ 2.

If the central fibre E0 is a reduced irreducible curve and the family is non-trivial, then

E2
0 ≥ m(m− 1) + gon(Ẽ0).

Proof. As in [3], let us consider the blowing-up f : Y ′ −→ Y of Y at y0 and let F ⊂ Y ′

be the exceptional divisor. Let E ′0 be the strict transform of E0. Then E ′0 = f ∗E0 − kF
with k = multy0E0 ≥ m and hence E ′0 is the blowing-up of E0 at y0.

Since each yt is a singular point of Et, the variety T parametrizing the family must be

at least two-dimensional. Then, up to consider a subfamily, we assume that the dimension

of T is 2. Let (t1, t2) ∈ C2 be the local coordinates of T around t = 0. Consider the sections

s1 = ρ
(

d
dt1

)
, s2 = ρ

(
d
dt2

)
∈ H0(E0,OE0(E0)) of the normal bundle to C in Y , where ρ

is the Kodaira-Spencer deformation map. Thus, by [3, Lemma 1.1] and being the family

non-trivial, s1 and s2 induce two non-zero sections s′1, s
′
2 ∈ H0(E ′0, f

∗(OE0(E0))⊗OY ′((1−
m)F )|E′

0
). By last two sections we define a map φ : E ′0 −→ P1 which extends to a map

φ̃ : Ẽ0 −→ P1, hence

E2
0 = degOE0(E0) = deg f ∗(OE0(E0))|E′

0
≥ (m−1)(F ·E ′0)+deg φ ≥ m(m−1)+gon(Ẽ0)

and this concludes the proof. �

2.3. Gonality of curves on C(2). Let C be a very general curve of genus g ≥ 3. Our

next task is to study the gonality of the curves lying on the second symmetric product

C(2), so that we can combine this study with the previous lemma.

As C is assumed to be very general and its genus is greater than two, we have that

C is non-hyperelliptic and the second symmetric product C(2) embeds into the Jacobian

variety J(C) via the Abel map. Then, let us focus on the gonality of curves lying on

J(C).

To start we recall that any Abelian variety does not contain rational curves. Indeed, if

R were a rational curve contained in an Abelian variety A, then the inclusion map should

factor through the Jacobian variety of R. As the Jacobian variety of a rational curve is a

point, we get a contradiction.
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In [7], Gian Pietro Pirola proves that the generic Abelian variety of dimension greater

than 2 does not contain hyperelliptic curve of any genus, where elliptic curves are consi-

dered as special cases of hyperelliptic curves. Since for any 3-dimensional Abelian variety

there exists an isogeny to a Jacobian variety of a genus three curve, we deduce that

for any very general curve C of genus three, its Jacobian variety J(C) does not contain

hyperelliptic curves. Thus by using a degeneration argument we have the following.

Proposition 2.3. If C is a very general curve of genus g ≥ 3, the Jacobian variety J(C)

does not contain hyperelliptic curves.

Proof. As we said above, the case of genus 3 is a consequence of [7, Theorem 2]. Then by

induction on the genus, suppose that the statement holds for every very general curve of

genus g − 1.

So, consider a very general curve D of genus g − 1 and a smooth elliptic curve E,

together with two points p ∈ D and q ∈ E. Let C0 be the nodal curve obtained by gluing

D and E at p and q. Let C −→ ∆ be a proper flat family over a disc ∆ such that the

fiber over 0 ∈ ∆ is C0 and for any t 6= 0 the fiber Ct is a smooth curve of genus g.

Then consider the Jacobian bundle over ∆ of C, that is J(C) −→ ∆ with J(C)t = J(Ct)

for all t ∈ ∆ − {0}. By contradiction, assume that the fiber J(Ct) of J(C) contains an

hyperelliptic curve Xt for very general t ∈ ∆ − {0}. Hence - up to restrict the disk ∆ -

we can define the following map of families over the punctured disk ∆− {0}

X
ϕ //

##GGGGGGGGG J(C)

zzuuuuuuuuu

∆− {0}

where ϕt : Xt ↪→ J(Ct) is the inclusion map.

We have J(C)0 = J(D)× J(E) = J(D)× E. Denote by π1 : J(D)× E −→ J(D) the

natural projection map on the first factor. Let X0 ⊂ J(D) × E be the flat limit of the

family of hyperelliptic curves X at t = 0. Since the very general fiber Xt generates J(Ct) as

a group, then X0 must generate J(D)×E. Thus π1(X0) ⊂ J(D) cannot be 0-dimensional

and hence it is a non-rational curve on J(D). Then X0 has some non-rational irreducible

components that are all hyperelliptic curves. Therefore all the irreducible components of

π1(X0) are hyperelliptic and we have a contradiction because D has genus g − 1 and its

Jacobian variety J(D) does not contain hyperelliptic cuves by induction. �

As a consequence of the proposition, the following holds.

Corollary 2.4. Let C be a very general curve of genus g ≥ 3. Then there are neither

rational curves nor hyperelliptic curves lying on C(2).
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3. Proof of Theorem 1.1

This section is devoted to prove Theorem 1.1. To start we focus on the case of genus

five. We follow the argument of J. Ross in [8, Section 4] and we are proving that for any

very general curve C of genus five we have

τ(C) ≤ 9

4
. (3.1)

So, let D be a very general curve of genus 4 and let D(2) be its second symmetric

product. Then set a = 9, b = 4 and consider the numerical equivalence class

L := (a+ b)x− bδ
2
∈ N1(D(2)).

Since τ(D) = 2, by Theorem 2.1 we deduce that to prove (3.1) it suffices to show that

for a very general point y ∈ D(2)

ε(y ;D(2), L) ≥ b = 4, (3.2)

i.e. there is not a reduced and irreducible curve E passing through a general point

y ∈ D(2), such that (L · E)/multyE < b = 4.

Let us consider the set F of pairs (F, z) such that F ⊂ D(2) is a reduced irreducible

curve, z ∈ F is a point and (L · F )/multzF < 4. Since F consists of at most countably

many algebraic families and the point y ∈ D(2) is assumed to be very general, the

inequality (3.2) will be checked if each of these families is discrete.

Aiming for a contradiction, assume that there exists a family {yt ∈ Et}t∈T such that

for all t ∈ T the curve Et ⊂ D(2) is reduced and irreducible, the point yt ∈ D(2) is very

general and
(L · Et)
multytEt

< 4. (3.3)

As in [8], we note that for any reduced irreducible curve E ⊂ D(2) through a very

general point y ∈ D(2) we have

(L · E) ≥ b = 4. (3.4)

To see this fact, consider the numerical class [E] = (n + γ)x− γ(δ/2) ∈ N1(D(2)). Since

the class x is ample, (x · E) = n > 0 and the claim is easily checked when γ ≤ 0.

Then assume γ > 0. Being τ(D) = 2, the diagonal is the only curve of D(2) with

negative self intersection. Moreover, there exist at most finitely many irreducible curves

of zero self intersection and numerical class (n + γ)x− γ(δ/2), then we can assume that

E2 = n2 − 4γ2 > 0 as y ∈ D(2) is assumed to be very general. Hence n ≥ 2γ + 1 and

(L · E) = 9n− 16γ ≥ 2γ + 9 > 4 for all γ > 0.

Thus by (3.3) and (3.4) we deduce that multytEt > (L · Et)/4 ≥ 1 for any t ∈ T .

Being Et reduced, for a general point z ∈ Et the multiplicity of Et at z is one, therefore

the family {yt ∈ Et}t∈T is non-trivial.
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Without loss of generality, let us assume that the central fibre (E0, y0) is such that

m := multy0E0 ≤ multytEt

for any t ∈ T . Hence by Lemma 2.2 we have that the curve E0 has self intersection

E2
0 ≥ m(m− 1) + gon(Ẽ0), where Ẽ0 is the normalization of E0.

Moreover, by Corollary 2.4 there are neither rational curves nor hyperelliptic curves

lying on D(2). Therefore the gonality of Ẽ0 is at least three and

E2
0 ≥ m(m− 1) + 3. (3.5)

Finally, by (3.3) we deduce that (L · E0) ≤ 4m − 1. Thus by Hodge Index Theorem we

have

m(m− 1) + 3 ≤ E2
0 ≤

(L · E0)
2

L2
≤ (4m− 1)2

17
,

but this is impossible. Hence we proved that if C is a very general curve of genus g = 5,

then τ(C) ≤ 9
4
.

To conclude the proof of Theorem 1.1, we note that 9
4
< 37

15
< 189

71
< 54

19
. Hence it is

still possible to apply Theorem 2.1 and - by using the very same argument - the proof for

the cases g = 6, 7, 8 is straightforward.
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